Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-3037-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-3037-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and evaluation of CO2 transport in MPAS-A v6.3
Department of Geography and Environmental Studies, Central Michigan University, Mount Pleasant, MI, USA
Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI, USA
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
now at: Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
Kenneth J. Davis
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, PA, USA
Sandip Pal
Department of Geosciences, Texas Tech University, Lubbock, TX, USA
Josep-Anton Morguí
Environmental Science and Technology Institute, Universitat Autònoma de Barcelona, ICTA-UAB, Bellaterra, Spain
Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, BEECA-UB, Barcelona, Spain
Related authors
Tao Zheng, Sha Feng, Jeffrey Steward, Xiaoxu Tian, David Baker, and Martin Baxter
Geosci. Model Dev., 17, 1543–1562, https://doi.org/10.5194/gmd-17-1543-2024, https://doi.org/10.5194/gmd-17-1543-2024, 2024
Short summary
Short summary
The tangent linear and adjoint models have been successfully implemented in the MPAS-CO2 system, which has undergone rigorous accuracy testing. This development lays the groundwork for a global carbon flux data assimilation system, which offers the flexibility of high-resolution focus on specific areas, while maintaining a coarser resolution elsewhere. This approach significantly reduces computational costs and is thus perfectly suited for future CO2 geostationery and imager satellites.
Yuqi Huang, Chenghao Wang, Tyler Danzig, Temple R. Lee, and Sandip Pal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3397, https://doi.org/10.5194/egusphere-2025-3397, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We evaluated a high-resolution numerical weather prediction model in a small, semi-arid U.S. city using dense ground-based measurements. While the forecasts showed good skill for temperature and humidity, they consistently overestimated wind and underestimates nighttime cooling, with inaccurate heat advection predictions. The results highlight the need for improved urban representation in forecast models to better support heat warning systems for small cities.
Roger Curcoll, Alba Àgueda, Josep-Anton Morguí, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
Atmos. Chem. Phys., 25, 6299–6323, https://doi.org/10.5194/acp-25-6299-2025, https://doi.org/10.5194/acp-25-6299-2025, 2025
Short summary
Short summary
In this work, the methane emissions from the rice crops of the Ebro Delta were estimated with the Radon Tracer Method, using back trajectories and radon and methane observations. Estimated fluxes show a strong seasonality with maximums in October, corresponding with the period of harvest and straw incorporation. The estimated annual methane emission was about 262.8 kg CH4 ha‑1. Results were compared with fluxes obtained with static chambers showing strong agreement between both methodologies.
Jason P. Horne, Scott J. Richardson, Samantha L. Murphy, Helen C. Kenion, Bernd J. Haupt, Benjamin J. Ahlswede, Natasha L. Miles, and Kenneth J. Davis
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-232, https://doi.org/10.5194/essd-2025-232, 2025
Preprint under review for ESSD
Short summary
Short summary
We present data from a network of towers in Indianapolis used to study how heat and gases move between the surface and atmosphere in a city. This rare, long-term urban experiment helps us understand things like carbon emissions from these urban areas. We explain what was measured, how we checked data quality, and why these observations help improve our overall understanding of the urban environment.
Tobias Gerken, Kenneth J. Davis, Klaus Keller, and Sha Feng
EGUsphere, https://doi.org/10.5194/egusphere-2025-341, https://doi.org/10.5194/egusphere-2025-341, 2025
Short summary
Short summary
We apply the Patient Rule Induction Method (PRIM) technique to airborne CO2 and meteorological data to better understand atmospheric conditions and implications for carbon dioxide model-observation-mismatches. We found PRIM is capable of separating observations from different seasons and levels based on atmospheric conditions. Large magnitude carbon dioxide model-observation-differences were associated with non-typical atmospheric conditions, with implications for transport model evaluation.
Bianca C. Baier, John B. Miller, Colm Sweeney, Scott Lehman, Chad Wolak, Joshua P. DiGangi, Yonghoon Choi, Kenneth Davis, Sha Feng, and Thomas Lauvaux
EGUsphere, https://doi.org/10.5194/egusphere-2025-821, https://doi.org/10.5194/egusphere-2025-821, 2025
Short summary
Short summary
CO2 radiocarbon content (Δ14CO2) is a unique tracer helps to accurately quantify anthropogenic CO2 emitted into the atmosphere. Δ14CO2 measured in airborne flask samples is used to distinguish fossil versus biogenic CO2 sources. Mid-Atlantic U.S. CO2 variability is found to be driven by the biosphere. Errors in modeled fossil fuel CO2 are evaluated using Δ14CO2 airborne data as an avenue to improving future regional models of atmospheric CO2 transport.
Tao Zheng, Sha Feng, Jeffrey Steward, Xiaoxu Tian, David Baker, and Martin Baxter
Geosci. Model Dev., 17, 1543–1562, https://doi.org/10.5194/gmd-17-1543-2024, https://doi.org/10.5194/gmd-17-1543-2024, 2024
Short summary
Short summary
The tangent linear and adjoint models have been successfully implemented in the MPAS-CO2 system, which has undergone rigorous accuracy testing. This development lays the groundwork for a global carbon flux data assimilation system, which offers the flexibility of high-resolution focus on specific areas, while maintaining a coarser resolution elsewhere. This approach significantly reduces computational costs and is thus perfectly suited for future CO2 geostationery and imager satellites.
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Zachary Barkley, Kenneth Davis, Natasha Miles, Scott Richardson, Aijun Deng, Benjamin Hmiel, David Lyon, and Thomas Lauvaux
Atmos. Chem. Phys., 23, 6127–6144, https://doi.org/10.5194/acp-23-6127-2023, https://doi.org/10.5194/acp-23-6127-2023, 2023
Short summary
Short summary
Using methane monitoring instruments attached to towers, we measure methane concentrations and quantify methane emissions coming from the Marcellus and Permian oil and gas basins. In the Marcellus, emissions were 3 times higher than the state inventory across the entire monitoring period. In the Permian, we see a sharp decline in emissions aligning with the onset of the COVID-19 pandemic. Tower observational networks can be utilized in other basins for long-term monitoring of emissions.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Vanessa C. Monteiro, Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth J. Davis
Earth Syst. Sci. Data, 14, 2401–2417, https://doi.org/10.5194/essd-14-2401-2022, https://doi.org/10.5194/essd-14-2401-2022, 2022
Short summary
Short summary
We describe a network of five ground-based in situ towers, equipped to measure concentrations of methane, carbon dioxide, hydrogen sulfide, and the isotopic ratio of methane, in the Permian Basin, United States. The main goal is to use methane concentrations with atmospheric models to determine methane emissions from one of the Permian sub-basins. These datasets can improve emissions estimations, leading to best practices in the oil and natural gas industry, and policies for emissions reduction.
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022, https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Short summary
Low-cost air enquirer kits, including CO2 and environmental parameter sensors, have been designed, built, and tested in a new steady-state through-flow chamber for simultaneous measurements of CO2 fluxes in soil and CO2 concentrations in air. A CO2 calibration and multiparametric fitting reduced the total uncertainty of CO2 concentration by 90 %. This system allows continuous measurement of CO2 fluxes and CO2 ambient air, with low cost (EUR 1200), low energy demand (<5 W), and low maintenance.
David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
Short summary
Short summary
The OCO-2 satellite measures many closely spaced column-averaged CO2 values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2 measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Qiansi Tu, Frank Hase, Matthias Schneider, Omaira García, Thomas Blumenstock, Tobias Borsdorff, Matthias Frey, Farahnaz Khosrawi, Alba Lorente, Carlos Alberti, Juan J. Bustos, André Butz, Virgilio Carreño, Emilio Cuevas, Roger Curcoll, Christopher J. Diekmann, Darko Dubravica, Benjamin Ertl, Carme Estruch, Sergio Fabián León-Luis, Carlos Marrero, Josep-Anton Morgui, Ramón Ramos, Christian Scharun, Carsten Schneider, Eliezer Sepúlveda, Carlos Toledano, and Carlos Torres
Atmos. Chem. Phys., 22, 295–317, https://doi.org/10.5194/acp-22-295-2022, https://doi.org/10.5194/acp-22-295-2022, 2022
Short summary
Short summary
We use different methane ground- and space-based remote sensing data sets for investigating the emission strength of three waste disposal sites close to Madrid. We present a method that uses wind-assigned anomalies for deriving emission strengths from satellite data and estimate their uncertainty to 9–14 %. The emission strengths estimated from the remote sensing data sets are significantly larger than the values published in the official register.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Xueying Yu, Dylan B. Millet, Kelley C. Wells, Daven K. Henze, Hansen Cao, Timothy J. Griffis, Eric A. Kort, Genevieve Plant, Malte J. Deventer, Randall K. Kolka, D. Tyler Roman, Kenneth J. Davis, Ankur R. Desai, Bianca C. Baier, Kathryn McKain, Alan C. Czarnetzki, and A. Anthony Bloom
Atmos. Chem. Phys., 21, 951–971, https://doi.org/10.5194/acp-21-951-2021, https://doi.org/10.5194/acp-21-951-2021, 2021
Short summary
Short summary
Methane concentrations have doubled since 1750. The US Upper Midwest is a key region contributing to such trends, but sources are poorly understood. We collected and analyzed aircraft data to resolve spatial and timing biases in wetland and livestock emission estimates and uncover errors in inventory treatment of manure management. We highlight the importance of intensive agriculture for the regional and US methane budgets and the potential for methane mitigation through improved management.
Petter Weibring, Dirk Richter, James G. Walega, Alan Fried, Joshua DiGangi, Hannah Halliday, Yonghoon Choi, Bianca Baier, Colm Sweeney, Ben Miller, Kenneth J. Davis, Zachary Barkley, and Michael D. Obland
Atmos. Meas. Tech., 13, 6095–6112, https://doi.org/10.5194/amt-13-6095-2020, https://doi.org/10.5194/amt-13-6095-2020, 2020
Short summary
Short summary
The present study describes an autonomously operated instrument for high-precision (20–40 parts per trillion in 1 s) measurements of ethane during actual airborne operations on a small aircraft platform (NASA's King Air B200). This paper discusses the dynamic nature of airborne performance due to various aircraft-induced perturbations, methods devised to identify such events, and solutions we have enacted to circumvent these perturbations.
Cited articles
Agustí-Panareda, A., Massart, S., Chevallier, F., Boussetta, S., Balsamo, G., Beljaars, A., Ciais, P., Deutscher, N. M., Engelen, R., Jones, L., Kivi, R., Paris, J.-D., Peuch, V.-H., Sherlock, V., Vermeulen, A. T., Wennberg, P. O., and Wunch, D.: Forecasting global atmospheric CO2, Atmos. Chem. Phys., 14, 11959–11983, https://doi.org/10.5194/acp-14-11959-2014, 2014. a, b, c
Agusti-Panareda, A., Diamantakis, M., Bayona, V., Klappenbach, F., and Butz, A.: Improving the inter-hemispheric gradient of total column atmospheric CO2 and CH4 in simulations with the ECMWF semi-Lagrangian atmospheric global model, Geosci. Model Dev., 10, 1–18, https://doi.org/10.5194/gmd-10-1-2017, 2017. a
Agustí-Panareda, A., Diamantakis, M., Massart, S., Chevallier, F., Muñoz-Sabater, J., Barré, J., Curcoll, R., Engelen, R., Langerock, B., Law, R. M., Loh, Z., Morguí, J. A., Parrington, M., Peuch, V.-H., Ramonet, M., Roehl, C., Vermeulen, A. T., Warneke, T., and Wunch, D.: Modelling CO2 weather – why horizontal resolution matters, Atmos. Chem. Phys., 19, 7347–7376, https://doi.org/10.5194/acp-19-7347-2019, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory's Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014. a, b, c, d, e, f, g
Baker, D. F., Doney, S. C., and Schimel, D. S.: Variational data assimilation
for atmospheric CO2, Tellus B, 58, 359–365, 2006. a
Blumenstock, T., Hase, F., Schneider, M., García, O. E., and Sepúlveda, E.:
TCCON data from Izana (ES), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.IZANA01.R1, 2017. a
Borge, R., Alexandrov, V., del Vas, J. J., Lumbreras, J., and Rodriguez, E.: A
comprehensive sensitivity analysis of the WRF model for air quality
applications over the Iberian Peninsula, Atmos. Environ., 42,
8560–8574, https://doi.org/10.1016/j.atmosenv.2008.08.032, 2008. a
Brunke, E., Labuschagne, C., Parker, B., Scheel, H., and Whittlestone, S.:
Baseline air mass selection at Cape Point, South Africa: application of
Rn-222 and other filter criteria to CO2, Atmos. Environ., 38,
5693–5702, https://doi.org/10.1016/j.atmosenv.2004.04.024, 2004. a
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001. a, b
Conway, T. J. and Thoning, K. W.: Short-term variations of atmospheric carbon
dioxide at the South Pole, Anarctic J., 25, 236–238, 1990. a
Davies, T.: Lateral boundary conditions for limited area models, Q.
J. Roy. Meteor. Soc., 140, 185–196,
https://doi.org/10.1002/qj.2127, 2014. a
Davis, K., Baier, B., Z., B., Bowman, K., Boyer, A., and Browell, E.:
Atmospheric Carbon and Transport (ACT) – America: A multi‐year airborne
mission to study fluxes and transport of CO2 and CH4 across the eastern
United States, American Geophysical Union Fall Meeting, San Francisco, CA, USA, 2018a. a
Davis, K. J., Obland, M. D., Lin, B., Lauvaux, T., O'Dell, C., Meadows, B., Browell, E. V., DiGangi, J. P., Sweeney, C., McGill, M. J., Barrick, J. D., Nehrir, A. R., Yang, M. M., Bennett, J. R., Baier, B. C., Roiger, A., Pal, S., Gerken, T., Fried, A., Feng, S., Shrestha, R., Shook, M. A., Chen, G., Campbell, L. J., Barkley, Z. R., and Pauly, R. M.: ACT–America: L3 Merged In Situ Atmospheric Trace Gases and Flask Data, Eastern USA [Data set], ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1593, 2018b. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Koehler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor.
Soc.,, 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
De Mazière, M., Sha, M. K., Desmet, F., Hermans, C., Scolas, F., Kumps, N.,
Metzger, J.-M., Duflot, V., and Cammas, J.-P.: TCCON data from Réunion
Island (RE), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.REUNION01.R0/ 1149288, 2014. a
Deutscher, N. M., Notholt, J., Messerschmidt, J., Weinzierl, C., Warneke, T.,
Petri, C., and Grupe, P.: TCCON data from Bialystok (PL), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.BIALYSTOK01.R1/ 1183984, 2015. a
Diamantakis, M. and Flemming, J.: Global mass fixer algorithms for conservative tracer transport in the ECMWF model, Geosci. Model Dev., 7, 965–979, https://doi.org/10.5194/gmd-7-965-2014, 2014. a, b
Díaz-Isaac, L. I., Lauvaux, T., and Davis, K. J.: Impact of physical parameterizations and initial conditions on simulated atmospheric transport and CO2 mole fractions in the US Midwest, Atmos. Chem. Phys., 18, 14813–14835, https://doi.org/10.5194/acp-18-14813-2018, 2018. a
Díaz-Isaac, L. I., Lauvaux, T., Bocquet, M., and Davis, K. J.: Calibration of a multi-physics ensemble for estimating the uncertainty of a greenhouse gas atmospheric transport model, Atmos. Chem. Phys., 19, 5695–5718, https://doi.org/10.5194/acp-19-5695-2019, 2019. a
Feist, D. G., Arnold, S. G., John, N., and Geibel, M. C.: TCCON data from
Ascension Island, Saint Helena, Ascension and Tristan da Cunha, Release
GGG2014R0, TCCON data archive, hosted by the Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA,
https://doi.org/10.14291/tccon.ggg2014.ascension01.R0/1149285, 2014. a
Feng, S., Lauvaux, T., Barkley, Z. R., Butler, M. B., Deng, A.,
Gaudet, B., and Davis, K. J.: Full WRF-Chem output in support of the NASA
Atmospheric Carbon and Transport (ACT)-America project (7/1/2016 –
7/31/2019). The Pennsylvania State University Data Commons, University Park,
Pennsylvania, USA, https://doi.org/10.26208/49kd-b637, 2020. a
Feng, S., Lauvaux, T., Newman, S., Rao, P., Ahmadov, R., Deng, A., Díaz-Isaac, L. I., Duren, R. M., Fischer, M. L., Gerbig, C., Gurney, K. R., Huang, J., Jeong, S., Li, Z., Miller, C. E., O'Keeffe, D., Patarasuk, R., Sander, S. P., Song, Y., Wong, K. W., and Yung, Y. L.: Los Angeles megacity: a high-resolution land–atmosphere modelling system for urban CO2 emissions, Atmos. Chem. Phys., 16, 9019–9045, https://doi.org/10.5194/acp-16-9019-2016, 2016. a, b
Feng, S., Lauvaux, T., Davis, K. J., Keller, K., Zhou, Y., Williams, C., Schuh,
A. E., Liu, J., and Baker, I.: Seasonal Characteristics of Model
Uncertainties From Biogenic Fluxes, Transport, and Large-Scale Boundary
Inflow in Atmospheric CO2 Simulations Over North America, J.
Geophys. Res.-Atmos., 124, 14325–14346,
https://doi.org/10.1029/2019JD031165, 2019. a, b
Francey, R. J., Steele, L. P., Spencer, D. A., Langenfelds, R. L., Law, R. M.,
Krummel, P. B., Fraser, P. J., Etheridge, D. M., Derek, N., Coram, S. A.,
Cooper, L. N., Allison, C. E., Porter, L., and Baly, S.: The CSIRO
(Australia) measurement of greenhouse gases in the global atmosphere, report
of the 11th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and
Related Tracer Measurement Techniques, Tokyo, Japan, September 2001, edited
by: Toru, S. and Kazuto, S., World Meteorological Organization Global
Atmosphere Watch, Geneva, Switzerland, 2003. a
Fritsch, J. M. and Chappell, C. F.: Numerical prediction of convectively
driven mesoscale pressure systems. Part I: convective parameterization,
J. Atmos. Sci., 37, 1722–1733,
https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2, 1980. a
Gaudry, A., Monfray, P., Polian, G., Bonsang, G., Ardouin, B., Jegou, A., and
Lambert, G.: Nonseasonnal variations of atmospheric CO2 concentrations at
Amsterdam Island, Tellus B, 43,
136–143, https://doi.org/10.1034/j.1600-0889.1991.00008.x, 1991. a
Gerbig, C., Körner, S., and Lin, J. C.: Vertical mixing in atmospheric tracer transport models: error characterization and propagation, Atmos. Chem. Phys., 8, 591–602, https://doi.org/10.5194/acp-8-591-2008, 2008. a
Gerbig, C., Dolman, A. J., and Heimann, M.: On observational and modelling strategies targeted at regional carbon exchange over continents, Biogeosciences, 6, 1949–1959, https://doi.org/10.5194/bg-6-1949-2009, 2009. a
Gockede, M., Turner, D. P., Michalak, A. M., Vickers, D., and Law, B. E.:
Sensitivity of a subregional scale atmospheric inverse CO2 modeling
framework to boundary conditions, J. Geophys. Res., 115, D24112,
https://doi.org/10.1029/2010JD014443, 2010. a
Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G.,
Anantharaj, V., Asay-Davis, X. S., Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A.,
Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M.,
Hannay, 15 C., Harrop, B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N.,
Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H.-Y., Lin, W., Lipscomb, W. H.,
Ma, P.-L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B.,
Price, S. F., Qian, Y., Rasch, P. J., Eyre, J. E. J. R., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler,
E. L., Salinger, A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A.
K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S.,
Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y.,
Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: Overview and
Evaluation at Standard Resolution, J. Adv. Model. Earth
Sy., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019. a
Gomez-Pelaez, A. J. and Ramos, R.: Improvements in the Carbon Dioxide and
Methane Continuous Measurement Programs at Izana Global GAW Station (Spain)
during 2007–2009, in: GAW report (No. 194) of the 15th WMO/IAEA Meeting of
Experts on Carbon Dioxide, Other Greenhouse Gases, and Related Tracer
Measurement Techniques, Jena, Germany; 7–10 September 2009, edited by:
Brand, W. A., World Meteorological Organization, TD No. 1553, 2005. a
Grell, G., Freitas, S. R., Stuefer, M., and Fast, J.: Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts, Atmos. Chem. Phys., 11, 5289–5303, https://doi.org/10.5194/acp-11-5289-2011, 2011. a
Griffith, D. W., Deutscher, N. M., Velazco, V. A., Wennberg, P. O., Yavin, Y.,
Keppel-Aleks, G., Washenfelder, R. A., Toon, G. C., Blavier, J.-F.,
Paton-Walsh, C., Jones, N. B., Kettlewell, G. C., Connor, B. J., Macatangay,
R. C., Roehl, C., Ryczek, M., Glowacki, J., Culgan, T., and Bryant, G. W.:
TCCON data from Darwin (AU), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.DARWIN01.R0/ 1149290, 2014a. a
Griffith, D. W., Velazco, V. A., Deutscher, N. M., Paton-Walsh, C., Jones,
N. B., Wilson, S. R., Macatangay, R. C., Kettlewell, G. C., Buchholz, R. R.,
and Riggenbach, M. O.: TCCON data from Wollongong (AU), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.WOLLONGONG01.R0/ 1149291, 2014b. a
Halter, B., Harris, J., and Conway, T.: Component signals in the record of
atmospheric carbon dioxide concentration at American Samoa, J.
Geophys. Res.-Atmos., 93, 15914–15918,
https://doi.org/10.1029/JD093iD12p15914, 1988. a
Hase, F., Blumenstock, T., Dohe, S., Groß, J., and Kiel, M.: TCCON data from
Karlsruhe (DE), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.KARLSRUHE01. R1/1182416, 2015. a
Haszpra, L., Barcza, Z., Bakwin, P., Berger, B., Davis, K., and Weidinger, T.:
Measuring system for the long-term monitoring of biosphere/atmosphere
exchange of carbon dioxide, J. Geophys. Res.-Atmos.,
106, 3057–3069, https://doi.org/10.1029/2000JD900600, 2001. a
Hatakka, J., Aalto, T., Aaltonen, V., Aurela, M., Hakola, H., Komppula, M.,
Laurila, T., Lihavainen, H., Paatero, J., Salminen, K., and Viisanen, Y.:
Overview of the atmospheric research activities and results at Pallas GAW
station, Boreal Environ. Res., 8, 365–383, 2003. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,
A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati,
G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I.,
Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020. a
Hong, S., Dudhia, J., and Chen, S.: A revised approach to ice microphysical
processes for the bulk parameterization of clouds and precipitation,
Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2, 2004. a
Hu, L., Andrews, A. E., Thoning, K. W., Sweeney, C., Miller, J. B., Michalak,
A. M., Dlugokencky, E., Tans, P. P., Shiga, Y. P., Mountain, M., Nehrkorn,
T., Montzka, S. A., McKain, K., Kofler, J., Trudeau, M., Michel, S. E.,
Biraud, S. C., Fischer, M. L., Worthy, D. E. J., Vaughn, B. H., White, J.
W. C., Yadav, V., Basu, S., and van der Velde, I. R.: Enhanced North American
carbon uptake associated with El Niño, Sci. Adv., 5, eaaw0076,
https://doi.org/10.1126/sciadv.aaw0076, 2019. a
Hu, X.-M., Nielsen-Gammon, J. W., and Zhang, F.: Evaluation of Three Planetary
Boundary Layer Schemes in the WRF Model, J. Appl. Meteorol.
Climatol., 49, 1831–1844, 2010. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008. a, b, c
Iraci, L. T., Podolske, J. R., Hillyard, P. W., Roehl, C., Wennberg, P. O.,
Blavier, J.-F., Landeros, J., Allen, N., Wunch, D., Zavaleta, J., Quigley,
E., Osterman, G. B., Albertson, R., Dunwoody, K., and Boyden, H.: TCCON data
from Edwards (US), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.EDWARDS01.R1/ 1255068, 2016. a
Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L., and Gloor,
M.: A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide:
1. Methods and global-scale fluxes, Global Biogeochem. Cycles, 21, GB1020,
https://doi.org/10.1029/2006GB002703, 2007. a
Jacobson, A. R., Schuldt, K. N., Miller, J. B., Oda, T., Tans, P., Arlyn
Andrews, Mund, J., Ott, L., Collatz, G. J., Aalto, T., Afshar, S., Aikin,
K., Aoki, S., Apadula, F., Baier, B., Bergamaschi, P., Beyersdorf, A.,
Biraud, S. C., Bollenbacher, A., Bowling, D., Brailsford, G., Abshire, J. B.,
Chen, G., Huilin Chen, Lukasz Chmura, Sites Climadat, Colomb, A.,
Conil, S., Cox, A., Cristofanelli, P., Cuevas, E., Curcoll, R., Sloop, C. D.,
Davis, K., Wekker, S. D., Delmotte, M., DiGangi, J. P., Dlugokencky, E.,
Ehleringer, J., Elkins, J. W., Emmenegger, L., Fischer, M. L., Forster, G.,
Frumau, A., Galkowski, M., Gatti, L. V., Gloor, E., Griffis, T., Hammer, S.,
Haszpra, L., Hatakka, J., Heliasz, M., Hensen, A., Hermanssen, O., Hintsa,
E., Holst, J., Jaffe, D., Karion, A., Kawa, S. R., Keeling, R., Keronen, P.,
Kolari, P., Kominkova, K., Kort, E., Krummel, P., Kubistin, D., Labuschagne,
C., Langenfelds, R., Laurent, O., Laurila, T., Lauvaux, T., Law, B., Lee, J.,
Lehner, I., Leuenberger, M., Levin, I., Levula, J., Lin, J., Lindauer, M.,
Loh, Z., Lopez, M., Myhre, C. L., Machida, T., Mammarella, I., Manca, G.,
Manning, A., Manning, A., Marek, M. V., Marklund, P., Martin, M. Y.,
Matsueda, H., McKain, K., Meijer, H., Meinhardt, F., Miles, N., Miller,
C. E., Mölder, M., Montzka, S., Moore, F., Josep-Anton Morgui, Morimoto,
S., Munger, B., Jaroslaw Necki, Newman, S., Nichol, S., Niwa, Y.,
O'Doherty, S., Mikaell Ottosson-Löfvenius, Paplawsky, B., Peischl, J.,
Peltola, O., Jean-Marc Pichon, Piper, S., Plass-Dölmer, C., Ramonet, M.,
Reyes-Sanchez, E., Richardson, S., Riris, H., Ryerson, T., Saito, K.,
Sargent, M., Sasakawa, M., Sawa, Y., Say, D., Scheeren, B., Schmidt, M.,
Schmidt, A., Schumacher, M., Shepson, P., Shook, M., Stanley, K.,
Steinbacher, M., Stephens, B., Sweeney, C., Thoning, K., Torn, M., Turnbull,
J., Tørseth, K., Bulk, P. V. D., Laan-Luijkx, I. T. V. D., Dinther, D. V.,
Vermeulen, A., Viner, B., Vitkova, G., Walker, S., Weyrauch, D., Wofsy, S.,
Worthy, D., Dickon Young, and Miroslaw Zimnoch: CarbonTracker CT2019, https://doi.org/10.25925/39M3-6069, 2020. a, b, c, d, e, f, g, h, i
Kain, J. S. and Fritsch, J. M.: A one-dimensional entraining detraining plume
model and its application in convective parameterization, J.
Atmos. Sci., 47, 2784–2802,
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990. a
Kawakami, S., Ohyama, H., Arai, K., Okumura, H., Taura, C., Fukamachi, T., and
Sakashita, M.: TCCON data from Saga (JP), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.SAGA01.R0/1149 283, 2014. a
Kivi, R., Heikkinen, P., and Kyro: TCCON data from Sodankyla, Finland, Release
GGG2014R0., TCCON data archive, hosted by the Carbon Dioxide Information
Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA,
https://doi.org/10.14291/tccon.ggg2014.sodankyla01.R0/1149280, 2014. a
Kretschmer, R., Gerbig, C., Karstens, U., and Koch, F.-T.: Error characterization of CO2 vertical mixing in the atmospheric transport model WRF-VPRM, Atmos. Chem. Phys., 12, 2441–2458, https://doi.org/10.5194/acp-12-2441-2012, 2012. a
Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P.: The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys., 5, 417–432, https://doi.org/10.5194/acp-5-417-2005, 2005. a, b
Lauvaux, T. and Davis, K. J.: Planetary boundary layer errors in mesoscale
inversions of column-integrated CO2 measurements, J. Geophys.
Res.-Atmos., 119, 490–508, https://doi.org/10.1002/2013JD020175,
2014. a
Lauvaux, T., Schuh, A. E., Uliasz, M., Richardson, S., Miles, N., Andrews, A. E., Sweeney, C., Diaz, L. I., Martins, D., Shepson, P. B., and Davis, K. J.: Constraining the CO2 budget of the corn belt: exploring uncertainties from the assumptions in a mesoscale inverse system, Atmos. Chem. Phys., 12, 337–354, https://doi.org/10.5194/acp-12-337-2012, 2012. a, b, c
Loh, Z. M., Law, R. M., Ziehn, T., van der Schoot M. V., Krummel, P. B.,
Steele, L. P., Etheridge, D. M., Spencer, D. A., Gregory, R. L., Langenfelds,
R. L., Stavert, A. R., and Thornton, D. P.: The Australian Greenhouse Gas
Observation Network: Current status and vision for the future. 10th
International Carbon Dioxide Conference (ICDC10), 21–25 August
2017, Interlaken, Switzerland,
available at: http://www.icdc10.unibe.ch/unibe/portal/fak_naturwis/micro_icdc10/content/e342182/e604227/e604229/files623284/Loh_Zoe.pdf (last access: 25 May 2021),
2017. a
Lopez, M., Schmidt, M., Ramonet, M., Bonne, J.-L., Colomb, A., Kazan, V., Laj, P., and Pichon, J.-M.: Three years of semicontinuous greenhouse gas measurements at the Puy de Dôme station (central France), Atmos. Meas. Tech., 8, 3941–3958, https://doi.org/10.5194/amt-8-3941-2015, 2015. a
Louis, J. F.: A parametric model of vertical eddy flux in the atmosphere,
Bound.-Lay. Meteorol., 17, 187–202, 1979. a
Masarie, K. A., Peters, W., Jacobson, A. R., and Tans, P. P.: ObsPack: a framework for the preparation, delivery, and attribution of atmospheric greenhouse gas measurements, Earth Syst. Sci. Data, 6, 375–384, https://doi.org/10.5194/essd-6-375-2014, 2014. a
Morgui, J. A., Agueda, A., Batet, O., Curcoll, R., Ealo, M., G. C.,
Occhipinti, P., Sanchez-Garcia, L., Arias, R., and Rodo, X.: ClimaDat: A
long-term network to study at different scales climatic processes and
interactions between climatic compartments, Geophys. Res. Abstr.,
EGU13-10265, EGU General Assembly 2013, Vienna, Austria, 2013. a, b, c, d
Morino, I., Matsuzaki, T., and Horikawa, M.: TCCON data from Tsukuba (JP),
125HR, Release GGG2014.R1, https://doi.org/10.14291/TCCON.GGG2014.TSUKUBA02.R1/ 1241486,
2016a. a
Morino, I., Yokozeki, N., Matsuzaki, T., and Horikawa, M.: TCCON data from
Rikubetsu (JP), Release GGG2014.R1,
https://doi.org/10.14291/TCCON.GGG2014.TSUKUBA02.R1/ 1241486, 2016b. a
Necki, J., Schmidt, M., Rozanski, K., Zimnoch, M., Korus, A., Lasa, J., Graul,
R., and Levin, I.: Six-year record of atmospheric carbon dioxide and methane
at a high-altitude mountain site in Poland, Tellus B, 55, 94–104,
https://doi.org/10.1034/j.1600-0889.2003.01446.x, 2003. a
Noh, Y., Cheon, W., Hong, S., and Raasch, S.: Improvement of the K-profile
model for the planetary boundary layer based on large eddy simulation data,
Bound.-Lay. Meteorol., 107, 401–427, https://doi.org/10.1023/A:1022146015946,
2003. a
Notholt, J., Petri, C., Warneke, T., Deutscher, N. M., Palm, M., Buschmann, M.,
Weinzierl, C., Macatangay, R. C., and Grupe, P.: TCCON data from Bremen (DE),
Release GGG2014.R0, https://doi.org/10.14291/TCCON.GGG2014.BREMEN01.R0/ 1149275, 2014. a
O'Dell, C. W., Connor, B., Bösch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D., Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor, T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99–121, https://doi.org/10.5194/amt-5-99-2012, 2012. a
Pal, S.: ACT-America: Profile-based Planetary Boundary Layer Heights, Eastern
USA, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1706, 2019. a
Pal, S. and Davis, K.: ACT-America Field Campaign Catalogue, ORNL DAAC, Oak
Ridge, Tennessee, USA,
available at: https://actamerica.ornl.gov/campaigns.html (last access: 25 May 2021), 2020. a
Pal, S., Davis, K. J., Lauvaux, T., Browell, E. V., Gaudet, B. J., and Stauffer, D.:
Observations of Greenhouse Gas Changes Across Summer Frontal Boundaries in
the Eastern United States, J. Geophys. Res.-Atmos., 125, e2019JD030526,
https://doi.org/10.1029/2019JD030526, 2020. a, b, c, d, e, f, g, h, i, j, k, l
Patra, P. K., Law, R. M., Peters, W., Roedenbeck, C., Takigawa, M., Aulagnier,
C., Baker, I., Bergmann, D. J., Bousquet, P., Brandt, J., Bruhwiler, L.,
Cameron-Smith, P. J., Christensen, J. H., Delage, F., Denning, A. S., Fan,
S., Geels, C., Houweling, S., Imasu, R., Karstens, U., Kawa, S. R., Kleist,
J., Krol, M. C., Lin, S. J., Lokupitiya, R., Maki, T., Maksyutov, S., Niwa,
Y., Onishi, R., Parazoo, N., Pieterse, G., Rivier, L., Satoh, M., Serrar, S.,
Taguchi, S., Vautard, R., Vermeulen, A. T., and Zhu, Z.: TransCom model
simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations
for the period 2002–2003, Global Biogeochem. Cycles, 22, gB4013,
https://doi.org/10.1029/2007GB003081, 2008. a, b
Peterson, J., Komhyr, W., Waterman, L., Gammon, R., Thoning, K., and Conway,
T.: Atmospheric CO2 variations at Barrow, Alaska,1973-1982, J.
Atmos. Chem., 4, 491–510, https://doi.org/10.1007/BF00053848, 1986. a
Pillai, D., Gerbig, C., Kretschmer, R., Beck, V., Karstens, U., Neininger, B., and Heimann, M.: Comparing Lagrangian and Eulerian models for CO2 transport – a step towards Bayesian inverse modeling using WRF/STILT-VPRM, Atmos. Chem. Phys., 12, 8979–8991, https://doi.org/10.5194/acp-12-8979-2012, 2012. a
Polavarapu, S. M., Neish, M., Tanguay, M., Girard, C., de Grandpré, J., Semeniuk, K., Gravel, S., Ren, S., Roche, S., Chan, D., and Strong, K.: Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of CO2, Atmos. Chem. Phys., 16, 12005–12038, https://doi.org/10.5194/acp-16-12005-2016, 2016. a, b, c, d, e
Putman, W. M. and Lin, S.-H.: Finite-volume transport on various cubed-sphere
grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007. a
Ramonet, M., Ciais, P., Aalto, T., Aulagnier, C., Chevallier, F., Cipriano, D.,
Conway, T. J., Haszpra, L., Kazan, V., Meinhardt, F., Paris, J.-D., Schmidt,
M., Simmonds, P., Xueref-Remy, I., and Necki, J. N.: A recent build-up of
atmospheric CO2 over Europe. Part 1: observed signals and possible
explanations, Tellus B, 62,
1–13, https://doi.org/10.1111/j.1600-0889.2009.00442.x, 2010. a
Rayner, P. J., Michalak, A. M., and Chevallier, F.: Fundamentals of data assimilation applied to biogeochemistry, Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, 2019. a
Ringler, T., Ju, L., and Gunzburger, M.: A multiresolution method for climate
system modeling: application of spherical centroidal Voronoi tessellations,
Ocean Dynam., 58, 475–498, https://doi.org/10.1007/s10236-008-0157-2, 2008. a
Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A unified
approach to energy conservation and potential vorticity dynamics for
arbitrarily-structured C-grids, J. Comput. Phys., 229,
3065–3090, https://doi.org/10.1016/j.jcp.2009.12.007, 2010. a
Sarrat, C., Noilhan, J., Lacarrere, P., Donier, S., Lac, C., Calvet, J. C.,
Dolman, A. J., Gerbig, C., Neininger, B., Ciais, P., Paris, J. D., Boumard,
F., Ramonet, M., and Butet, A.: Atmospheric CO2 modeling at the regional
scale: Application to the CarboEurope Regional Experiment, J.
Geophys. Res.-Atmos., 112, D12105, https://doi.org/10.1029/2006JD008107, 2007. a
Schibig, M. F., Steinbacher, M., Buchmann, B., van der Laan-Luijkx, I. T., van der Laan, S., Ranjan, S., and Leuenberger, M. C.: Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques, Atmos. Meas. Tech., 8, 57–68, https://doi.org/10.5194/amt-8-57-2015, 2015. a
Schmidt, M., Graul, R., Sartorius, H., and Levin, I.: The Schauinsland CO2
record: 30 years of continental observations and their implications for the
variability of the European CO2 budget, J. Geophys.
Res.-Atmos., 108, 4619, https://doi.org/10.1029/2002JD003085, 2003. a
Schuh, A. E., Lauvaux, T., West, T. O., Denning, A. S., Davis, K. J., Miles,
N., Richardson, S., Uliasz, M., Lokupitiya, E., Cooley, D., Andrews, A., and
Ogle, S.: Evaluating atmospheric CO2 inversions at multiple scales over a
highly inventoried agricultural landscape, Global Change Biol., 19,
1424–1439, https://doi.org/10.1111/gcb.12141, 2013. a
Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K.,
Chevallier, F., Crowell, S., Davis, K. J., Deng, F., Denning, S., Feng, L.,
Jones, D., Liu, J., and Palmer, I, P.: Quantifying the Impact of Atmospheric
Transport Uncertainty on CO2 Surface Flux Estimates, Global Biogeochem.
Cycles, 33, 484–500, https://doi.org/10.1029/2018GB006086, 2019. a
Sherlock, V., Connor, B., Robinson, J., Shiona, H., Smale, D., and Pollard,
D. F.: TCCON data from Lauder (NZ), 120HR, Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.LAUDER01.R0/ 1149293, 2014. a
Skamarock, W. C. and Gassmann, A.: Conservative Transport Schemes for
Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time
Integration, Mon. Weather Rev., 139, 2962–2975,
https://doi.org/10.1175/MWR-D-10-05056.1, 2011. a, b, c, d
Stephens, B. B., Miles, N. L., Richardson, S. J., Watt, A. S., and Davis, K. J.: Atmospheric CO2 monitoring with single-cell NDIR-based analyzers, Atmos. Meas. Tech., 4, 2737–2748, https://doi.org/10.5194/amt-4-2737-2011, 2011. a, b, c
Sussmann, R. and Rettinger, M.: TCCON data from Garmisch (DE), Release
GGG2014.R0, https://doi.org/10.14291/TCCON.GGG2014.GARMISCH01.R0/ 1149299, 2015. a
Thoning, K., Tans, P., and Komhyr, W.: Atmospheric carbon dioxide at Mauna Loa
Observatory, 2. Analysis of the NOAA/GMCC data, 1974–1985, J.
Geophys. Res.-Atmos., 94, 8549–8565,
https://doi.org/10.1029/JD094iD06p08549, 1989. a
Thuburn, J.: Rossby wave dispersion on the C-grid, Atmos. Sci.
Lett., 8, 37–42, https://doi.org/10.1002/asl.148, 2007. a
Tsutsumi, Y., Matsueda, H., and Nishioka, S.: Consistency of the CO2 primary
standards in JMA, 12th WMO/IAEA meeting of experts on carbon dioxide
concentration and related tracers measurement techniques, Toronto, Canada,
15–18 September 2003, Global Atmosphere Watch Report No. 161,
WMO/TD-No.1275, 2005. a, b, c
Vermeulen, A. T., Hensen, A., Popa, M. E., van den Bulk, W. C. M., and Jongejan, P. A. C.: Greenhouse gas observations from Cabauw Tall Tower (1992–2010), Atmos. Meas. Tech., 4, 617–644, https://doi.org/10.5194/amt-4-617-2011, 2011. a
Walko, R. L. and Avissar, R.: The Ocean-Land-Atmosphere Model (OLAM). Part I:
Shallow-Water Tests, Mon. Weather Rev., 136, 4033–4044,
https://doi.org/10.1175/2008MWR2522.1, 2008a. a
Walko, R. L. and Avissar, R.: The Ocean-Land-Atmosphere Model (OLAM). Part II:
Formulation and Tests of the Nonhydrostatic Dynamic Core, Mon. Weather
Rev., 136, 4045–4062, https://doi.org/10.1175/2008MWR2523.1,
2008b. a
Warneke, T., Messerschmidt, J., Notholt, J., Weinzierl, C., Deutscher, N. M.,
Petri, C., and Grupe, P.: TCCON data from Orléans (FR), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.ORLEANS01.R0/ 1149276, 2014. a
Wennberg, P. O., Roehl, C. M., Wunch, D., Toon, G. C., Blavier, J.-F.,
Washenfelder, R., Keppel-Aleks, G., Allen, N. T., and Ayers, J.: TCCON data
from Park Falls (US), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.PARKFALLS01.R0/ 1149161, 2014a. a
Wennberg, P. O., Wunch, D., Roehl, C. M., Blavier, J.-F., Toon, G. C., Allen,
N. T., Dowell, P., Teske, K., Martin, C., and Martin, J.: TCCON data from
Lamont (US), Release GGG2014.R0,
https://doi.org/10.14291/TCCON.GGG2014.LAMONT01.R0/ 1149159, 2014b. a
Williamson, D.: Semi-Lagrangian moisture transport in the NMC spectral model,
Tells A, 42, 413–428,
https://doi.org/10.3402/tellusa.v42i4.11887, 1990. a
Wilson, P.: Insight into the Carbon Cycle from Continuous Measurements of
Oxygen and Carbon Dioxide at Weybourne Atmospheric Observatory, UK,, PhD
thesis, University of East Anglia, Norwich, UK, 2013. a
Wunch, D., Toon, G. C., Wennberg, P. O., Wofsy, S. C., Stephens, B. B., Fischer, M. L., Uchino, O., Abshire, J. B., Bernath, P., Biraud, S. C., Blavier, J.-F. L., Boone, C., Bowman, K. P., Browell, E. V., Campos, T., Connor, B. J., Daube, B. C., Deutscher, N. M., Diao, M., Elkins, J. W., Gerbig, C., Gottlieb, E., Griffith, D. W. T., Hurst, D. F., Jiménez, R., Keppel-Aleks, G., Kort, E. A., Macatangay, R., Machida, T., Matsueda, H., Moore, F., Morino, I., Park, S., Robinson, J., Roehl, C. M., Sawa, Y., Sherlock, V., Sweeney, C., Tanaka, T., and Zondlo, M. A.: Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351–1362, https://doi.org/10.5194/amt-3-1351-2010, 2010.
a
Zheng, T., Nassar, R., and Baxter, M.: Estimating power plant CO2 emission
using OCO-2 XCO2 and high resolution WRF-Chem simulations, Environ.
Res. Lett., 14, 085001, https://doi.org/10.1088/1748-9326/ab25ae, 2019. a, b
Zheng, T., French, N. H. F., and Baxter, M.: Development of the WRF-CO2 4D-Var assimilation system v1.0, Geosci. Model Dev., 11, 1725–1752, https://doi.org/10.5194/gmd-11-1725-2018, 2018. a, b
Short summary
Carbon dioxide is the most important greenhouse gas. We develop the numerical model that represents carbon dioxide transport in the atmosphere. This model development is based on the MPAS model, which has a variable-resolution capability. The purpose of developing carbon dioxide transport in MPAS is to allow for high-resolution transport model simulation that is not limited by the lateral boundaries. It will also form the base for a future development of MPAS-based carbon inversion system.
Carbon dioxide is the most important greenhouse gas. We develop the numerical model that...