Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2827-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-2827-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and evaluation of spectral nudging strategy for the simulation of summer precipitation over the Tibetan Plateau using WRF (v4.0)
Ziyu Huang
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
CAS Center for Excellence in Comparative Planetology, Hefei 230026,
China
Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
210023, China
Yaoming Ma
Key Laboratory of Tibetan Environment Changes and Land Surface
Processes, Institute of Tibetan Plateau Research, Chinese Academy of
Science, Beijing 100101, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing
100101, China
College of Earth and Planetary Sciences, University of Chinese Academy
of Science, Beijing 100049, China
Yunfei Fu
School of Earth and Space Sciences, University of Science and
Technology of China, Hefei 230026, China
Related authors
No articles found.
Haipeng Yu, Guantian Wang, Zeyong Hu, Yaoming Ma, Maoshan Li, Weiqiang Ma, Lianglei Gu, Fanglin Sun, Hongchun Gao, Shujin Wang, and Fuquan Lu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-356, https://doi.org/10.5194/essd-2025-356, 2025
Preprint under review for ESSD
Short summary
Short summary
The Nagqu Observation Network, located in Central Tibetan Plateau (CTP), has functioned as the primary source of land-atmosphere interaction observations and published a near-surface meteorological observational dataset which spans a period of nine years (2014–2022) with hourly temporal resolution. This dataset will contribute to the understanding of the mechanism of land-atmosphere interactions on the TP and support comprehensive research of the energy-water cycle and climate change.
Binbin Wang, Yaoming Ma, Zeyong Hu, Weiqiang Ma, Xuelong Chen, Cunbo Han, Zhipeng Xie, Yuyang Wang, Maoshan Li, Bin Ma, Xingdong Shi, Weimo Li, and Zhengling Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-195, https://doi.org/10.5194/essd-2025-195, 2025
Preprint under review for ESSD
Short summary
Short summary
This study reveals distinct patterns in water, heat, and carbon exchange over the Tibetan Plateau. Heat transfer peaks in spring, while water vapor release is highest in summer. Most stations act as carbon sinks, but one in a forested valley is a carbon source, likely due to vegetation loss and human activity. The findings highlight the strong connections between water, heat, and carbon fluxes, offering valuable insights into climate change and weather forecasting.
Minqiang Zhou, Yilong Wang, Minzheng Duan, Xiangjun Tian, Jinzhi Ding, Jianrong Bi, Yaoming Ma, Weiqiang Ma, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1293, https://doi.org/10.5194/egusphere-2025-1293, 2025
Short summary
Short summary
The Qinghai-Tibetan Plateau is a key system that impacts the global carbon balance. This study presents the greenhouse gas (GHG) mole fraction measurement campaign in May 2022 at Mt. Qomolangma station, including ground-based remote sensing and in situ measurements. The GHG measurements are carried out in this region for the first time and used for satellite validation.
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1963, https://doi.org/10.5194/egusphere-2024-1963, 2024
Preprint archived
Short summary
Short summary
Wind speed spectra analysis is very important for understanding boundary layer turbulence characteristics, atmospheric numerical model development, and wind energy assessment. However, wind speed spectra studies in mountainous areas are extremely scarce. In this study, using a 15-year time series of wind speed observed by a PBL tower and eddy-covariance tower at a site on the north slope of Mt. Everest, we investigated the characteristics of wind speed and wind speed spectrum.
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024, https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Short summary
Current models and satellites struggle to accurately represent the land–atmosphere (L–A) interactions over the Tibetan Plateau. We present the most extensive compilation of in situ observations to date, comprising 17 years of data on L–A interactions across 12 sites. This quality-assured benchmark dataset provides independent validation to improve models and remote sensing for the region, and it enables new investigations of fine-scale L–A processes and their mechanistic drivers.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Ling Yuan, Xuelong Chen, Yaoming Ma, Cunbo Han, Binbin Wang, and Weiqiang Ma
Earth Syst. Sci. Data, 16, 775–801, https://doi.org/10.5194/essd-16-775-2024, https://doi.org/10.5194/essd-16-775-2024, 2024
Short summary
Short summary
Accurately monitoring and understanding the spatial–temporal variability of evapotranspiration (ET) components over the Tibetan Plateau (TP) remains difficult. Here, 37 years (1982–2018) of monthly ET component data for the TP was produced, and the data are consistent with measurements. The annual average ET for the TP was about 0.93 (± 0.037) × 103 Gt yr−1. The rate of increase of the ET was around 0.96 mm yr−1. The increase in the ET can be explained by warming and wetting of the climate.
Zhenhao Wu, Yunfei Fu, Peng Zhang, Songyan Gu, and Lin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-532, https://doi.org/10.5194/essd-2023-532, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We establish a new rain cell precipitation parameter and visible infrared and microwave signal dataset combining with the multi-instrument observation data on the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional study of rain cell precipitation system, and reveal the spatial and temporal variations of the scale morphology and intensity of the system.
Peizhen Li, Lei Zhong, Yaoming Ma, Yunfei Fu, Meilin Cheng, Xian Wang, Yuting Qi, and Zixin Wang
Atmos. Chem. Phys., 23, 9265–9285, https://doi.org/10.5194/acp-23-9265-2023, https://doi.org/10.5194/acp-23-9265-2023, 2023
Short summary
Short summary
In this paper, all-sky downwelling shortwave radiation (DSR) over the entire Tibetan Plateau (TP) at a spatial resolution of 1 km was estimated using an improved parameterization scheme. The influence of topography and different radiative attenuations were comprehensively taken into account. The derived DSR showed good agreement with in situ measurements. The accuracy was better than six other DSR products. The derived DSR also provided more reasonable and detailed spatial patterns.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Maoshan Li, Wei Fu, Na Chang, Ming Gong, Pei Xu, Yaoming Ma, Zeyong Hu, Yaoxian Yang, and Fanglin Sun
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-257, https://doi.org/10.5194/acp-2022-257, 2022
Revised manuscript not accepted
Short summary
Short summary
Compared with the plain area, the land-atmosphere interaction on the Tibetan Plateau (TP) is intense and complex, which affects the structure of the boundary layer. The observed height of the convective boundary layer on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with latent heat flux.
Aoqi Zhang, Chen Chen, Yilun Chen, Weibiao Li, Shumin Chen, and Yunfei Fu
Earth Syst. Sci. Data, 14, 1433–1445, https://doi.org/10.5194/essd-14-1433-2022, https://doi.org/10.5194/essd-14-1433-2022, 2022
Short summary
Short summary
We constructed an event-based precipitation dataset with life cycle evolution based on coordinated application of observations from spaceborne active precipitation radar and geostationary satellites. The dataset provides both three-dimensional structures of the precipitation system and its corresponding life cycle evolution. The dataset greatly reduces the data size and avoids complex data processing algorithms for studying the life cycle evolution of precipitation microphysics.
Yunshuai Zhang, Qian Huang, Yaoming Ma, Jiali Luo, Chan Wang, Zhaoguo Li, and Yan Chou
Atmos. Chem. Phys., 21, 15949–15968, https://doi.org/10.5194/acp-21-15949-2021, https://doi.org/10.5194/acp-21-15949-2021, 2021
Short summary
Short summary
The source region of the Yellow River has an important role in issues related to water resources, ecological environment, and climate changes in China. We utilized large eddy simulation to understand whether the surface heterogeneity promotes or inhibits the boundary-layer turbulence, the great contribution of the thermal circulations induced by surface heterogeneity to the water and heat exchange between land/lake and air. Moreover, the turbulence in key locations is characterized.
Lian Liu, Yaoming Ma, Massimo Menenti, Rongmingzhu Su, Nan Yao, and Weiqiang Ma
Hydrol. Earth Syst. Sci., 25, 4967–4981, https://doi.org/10.5194/hess-25-4967-2021, https://doi.org/10.5194/hess-25-4967-2021, 2021
Short summary
Short summary
Albedo is a key factor in land surface energy balance, which is difficult to successfully reproduce by models. Here, we select eight snow events on the Tibetan Plateau to evaluate the universal improvements of our improved albedo scheme. The RMSE relative reductions for temperature, albedo, sensible heat flux and snow depth reach 27%, 32%, 13% and 21%, respectively, with remarkable increases in the correlation coefficients. This presents a strong potential of our scheme for modeling snow events.
Zhipeng Xie, Yaoming Ma, Weiqiang Ma, Zeyong Hu, and Genhou Sun
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-260, https://doi.org/10.5194/tc-2021-260, 2021
Preprint withdrawn
Short summary
Short summary
Wind-driven snow transport greatly influences spatial-temporal distribution of snow in mountainous areas. Knowledge of the spatiotemporal variability of blowing snow is in its infancy because of inaccuracies in satellite-based blowing snow algorithms and the absence of quantitative assessments. Here, we present the spatiotemporal variability and magnitude of blowing snow events, and explore the potential links with ambient meteorological conditions using near surface blowing snow observations.
Cunbo Han, Yaoming Ma, Binbin Wang, Lei Zhong, Weiqiang Ma, Xuelong Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, https://doi.org/10.5194/essd-13-3513-2021, 2021
Short summary
Short summary
Actual terrestrial evapotranspiration (ETa) is a key parameter controlling the land–atmosphere interaction processes and water cycle. However, the spatial distribution and temporal changes in ETa over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001–2018) monthly ETa and its spatial distribution on the TP by a combination of meteorological data and satellite products. Results have been validated at six eddy-covariance monitoring sites and show high accuracy.
Zhipeng Xie, Weiqiang Ma, Yaoming Ma, Zeyong Hu, Genhou Sun, Yizhe Han, Wei Hu, Rongmingzhu Su, and Yixi Fan
Hydrol. Earth Syst. Sci., 25, 3783–3804, https://doi.org/10.5194/hess-25-3783-2021, https://doi.org/10.5194/hess-25-3783-2021, 2021
Short summary
Short summary
Ground information on the occurrence of blowing snow has been sorely lacking because direct observations of blowing snow are sparse in time and space. In this paper, we investigated the potential capability of the decision tree model to detect blowing snow events in the European Alps. Trained with routine meteorological observations, the decision tree model can be used as an efficient tool to detect blowing snow occurrences across different regions requiring limited meteorological variables.
Yanbin Lei, Tandong Yao, Kun Yang, Lazhu, Yaoming Ma, and Broxton W. Bird
Hydrol. Earth Syst. Sci., 25, 3163–3177, https://doi.org/10.5194/hess-25-3163-2021, https://doi.org/10.5194/hess-25-3163-2021, 2021
Short summary
Short summary
Lake evaporation from Paiku Co on the TP is low in spring and summer and high in autumn and early winter. There is a ~ 5-month lag between net radiation and evaporation due to large lake heat storage. High evaporation and low inflow cause significant lake-level decrease in autumn and early winter, while low evaporation and high inflow cause considerable lake-level increase in summer. This study implies that evaporation can affect the different amplitudes of lake-level variations on the TP.
Maoshan Li, Xiaoran Liu, Lei Shu, Shucheng Yin, Lingzhi Wang, Wei Fu, Yaoming Ma, Yaoxian Yang, and Fanglin Sun
Hydrol. Earth Syst. Sci., 25, 2915–2930, https://doi.org/10.5194/hess-25-2915-2021, https://doi.org/10.5194/hess-25-2915-2021, 2021
Short summary
Short summary
In this study, using MODIS satellite data and site atmospheric turbulence observation data in the Nagqu area of the northern Tibetan Plateau, with the Massman-retrieved model and a single height observation to determine aerodynamic surface roughness, temporal and spatial variation characteristics of the surface roughness were analyzed. The result is feasible, and it can be applied to improve the model parameters of the land surface model and the accuracy of model simulation in future work.
Lilu Sun and Yunfei Fu
Earth Syst. Sci. Data, 13, 2293–2306, https://doi.org/10.5194/essd-13-2293-2021, https://doi.org/10.5194/essd-13-2293-2021, 2021
Short summary
Short summary
Multi-source dataset use is hampered by use of different spatial and temporal resolutions. We merged Tropical Rainfall Measuring Mission precipitation radar and visible and infrared scanner measurements with ERA5 reanalysis. The statistical results indicate this process has no unacceptable influence on the original data. The merged dataset can help in studying characteristics of and changes in cloud and precipitation systems and provides an opportunity for data analysis and model simulations.
Genhou Sun, Zeyong Hu, Yaoming Ma, Zhipeng Xie, Jiemin Wang, and Song Yang
Hydrol. Earth Syst. Sci., 24, 5937–5951, https://doi.org/10.5194/hess-24-5937-2020, https://doi.org/10.5194/hess-24-5937-2020, 2020
Short summary
Short summary
We investigate the influence of soil conditions on the planetary boundary layer (PBL) thermodynamics and convective cloud formations over a typical underlying surface, based on a series of simulations on a sunny day in the Tibetan Plateau, using the Weather Research and Forecasting (WRF) model. The real-case simulation and sensitivity simulations indicate that the soil moisture could have a strong impact on PBL thermodynamics, which may be favorable for the convective cloud formations.
Yaoming Ma, Zeyong Hu, Zhipeng Xie, Weiqiang Ma, Binbin Wang, Xuelong Chen, Maoshan Li, Lei Zhong, Fanglin Sun, Lianglei Gu, Cunbo Han, Lang Zhang, Xin Liu, Zhangwei Ding, Genhou Sun, Shujin Wang, Yongjie Wang, and Zhongyan Wang
Earth Syst. Sci. Data, 12, 2937–2957, https://doi.org/10.5194/essd-12-2937-2020, https://doi.org/10.5194/essd-12-2937-2020, 2020
Short summary
Short summary
In comparison with other terrestrial regions of the world, meteorological observations are scarce over the Tibetan Plateau.
This has limited our understanding of the mechanisms underlying complex interactions between the different earth spheres with heterogeneous land surface conditions.
The release of this continuous and long-term dataset with high temporal resolution is expected to facilitate broad multidisciplinary communities in understanding key processes on the
Third Pole of the world.
Felix Nieberding, Christian Wille, Gerardo Fratini, Magnus O. Asmussen, Yuyang Wang, Yaoming Ma, and Torsten Sachs
Earth Syst. Sci. Data, 12, 2705–2724, https://doi.org/10.5194/essd-12-2705-2020, https://doi.org/10.5194/essd-12-2705-2020, 2020
Short summary
Short summary
We present the first long-term eddy covariance CO2 and H2O flux measurements from the large but underrepresented alpine steppe ecosystem on the central Tibetan Plateau. We applied careful corrections and rigorous quality filtering and analyzed the turbulent flow regime to provide meaningful fluxes. This comprehensive data set allows potential users to put the gas flux dynamics into context with ecosystem properties and potential flux drivers and allows for comparisons with other data sets.
Cited articles
Alexandru, A., de Elia, R., Laprise, R., Separovic, L., and Biner, S.:
Sensitivity Study of Regional Climate Model Simulations to Large-Scale
Nudging Parameters, Mon. Weather Rev., 137, 1666–1686, https://doi.org/10.1175/2008mwr2620.1,
2009.
Bhatt, B. C., Sobolowski, S., and King, M. P.: Assessment of downscaled
current and future projections of diurnal rainfall patterns for the
Himalaya, J. Geophys. Res.-Atmos., 119, 12533–12545, https://doi.org/10.1002/2014jd022134, 2014.
Bohner, J. and Lehmkuhl, F.: Environmental change modelling for Central and
High Asia: Pleistocene, present and future scenarios, Boreas, 34, 220–231, https://doi.org/10.1080/03009480510012917, 2005.
Bowden, J. H., Otte, T. L., Nolte, C. G., and Otte, M. J.: Examining
Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for
Regional Climate Modeling, J. Climate, 25, 2805–2823, https://doi.org/10.1175/Jcli-D-11-00167.1, 2012.
Bowden, J. H., Nolte, C. G., and Otte, T. L.: Simulating the impact of the
large-scale circulation on the 2-m temperature and precipitation
climatology, Clim. Dynam., 40, 1903–1920, https://doi.org/10.1007/s00382-012-1440-y, 2013.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2, 2001.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dong, W. H., Lin, Y. L., Wright, J. S., Ming, Y., Xie, Y. Y., Wang, B., Luo,
Y., Huang, W. Y., Huang, J. B., Wang, L., Tian, L. D., Peng, Y. R., and Xu,
F. H.: Summer rainfall over the southwestern Tibetan Plateau controlled by
deep convection over the Indian subcontinent, Nat. Commun., 7, 10925, https://doi.org/10.1038/ncomms10925, 2016.
Dudhia,
J.: Numerical Study of Convection Observed during the Winter Monsoon
Experiment Using a Mesoscale Two-Dimensional Model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2, 1989.
European Reanalysis Interim:
http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, last access: 18 May, 2021a.
European Reanalysis Interim: http://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/, last access: 18 May, 2021b.
Fu, R., Hu, Y., Wright, J. S., Jiang, J. H., Dickinson, R. E., Chen, M.,
Filipiak, M., Read, W. G., Waters, J. W., and Wu, D. L.: Short circuit of
water vapor and polluted air to the global stratosphere by convective
transport over the Tibetan Plateau, P. Natl. Acad. Sci. USA, 103, 5664–5669, https://doi.org/10.1073/pnas.0601584103, 2006.
Gao, Y. H., Xu, J. W., and Chen, D. L.: Evaluation of WRF Mesoscale Climate
Simulations over the Tibetan Plateau during 1979-2011, J. Climate, 28,
2823–2841, https://doi.org/10.1175/Jcli-D-14-00300.1, 2015.
Glisan, J. M., Gutowski, W. J., Cassano, J. J., and Higgins, M. E.: Effects
of Spectral Nudging in WRF on Arctic Temperature and Precipitation
Simulations, J. Climate, 26, 3985–3999, https://doi.org/10.1175/Jcli-D-12-00318.1, 2013.
Gomez, B. and Miguez-Macho, G.: The impact of wave number selection and
spin-up time in spectral nudging, Q. J. Roy. Meteor. Soc., 143, 1772–1786, https://doi.org/10.1002/qj.3032, 2017.
He, J., Zhang, F., Chen, X., Bao, X., Chen, D., Kim, H. M., Lai, H. W.,
Leung, L. R., Ma, X., Meng, Z., Ou, T., Xiao, Z., Yang, E. G., and Yang, K.:
Development and Evaluation of an Ensemble-Based Data Assimilation System for
Regional Reanalysis Over the Tibetan Plateau and Surrounding Regions, J. Adv.
Model Earth Syst., 11, 2503–2522, https://doi.org/10.1029/2019MS001665, 2019.
Heath, N. K. and Fuelberg, H. E.: Using a WRF simulation to examine regions where convection impacts the Asian summer monsoon anticyclone, Atmos. Chem. Phys., 14, 2055–2070, https://doi.org/10.5194/acp-14-2055-2014, 2014.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with
an explicit treatment of entrainment processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/mwr3199.1, 2006.
Immerzeel, W. W. and Bierkens, M. F. P.: Seasonal prediction of monsoon
rainfall in three Asian river basins: the importance of snow cover on the
Tibetan Plateau, Int. J. Climatol., 30, 1835–1842, https://doi.org/10.1002/joc.2033, 2010.
Jiang, X. W., Li, Y. Q., Yang, S., Yang, K., and Chen, J. W.: Interannual
Variation of Summer Atmospheric Heat Source over the Tibetan Plateau and the
Role of Convection around the Western Maritime Continent, J. Climate, 29,
121–138, https://doi.org/10.1175/jcli-d-15-0181.1, 2016.
Jiang, X. W., Wu, Y., Li, Y. Q., and Shu, J. C.: Simulation of interannual
variability of summer rainfall over the Tibetan Plateau by the Weather
Research and Forecasting model, Int. J. Climatol., 39, 756–767, https://doi.org/10.1002/joc.5840, 2019.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. P.: CMORPH: A
method that produces global precipitation estimates from passive microwave
and infrared data at high spatial and temporal resolution, J. Hydrometeorol.,
5, 487–503, https://doi.org/10.1175/1525-7541(2004)005<0487:Camtpg>2.0.Co;2, 2004.
Juang, H. M. H. and Kanamitsu, M.: The Nmc Nested Regional Spectral Model,
Mon. Weather Rev., 122, 3–26, 1994.
Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2, 2004.
Kanamaru, H. and Kanamitsu, M.: Scale-selective bias correction in a
downscaling of global analysis using a regional model, Mon. Weather Rev., 135,
334–350, 2007.
Karmacharya, J., Jones, R., Moufouma-Okia, W., and New, M.:
Evaluation of the added value of a high-resolution regional climate model
simulation of the South Asian summer monsoon climatology, Int. J. Climatol.,
37, 3630–3643, https://doi.org/10.1002/joc.4944, 2017.
Lang, T. J. and Barros, A. P.: Winter storms in the central Himalayas, J. Meteorol. Soc. Jpn., 82, 829–844, https://doi.org/10.2151/jmsj.2004.829, 2004.
Lo, J. C. F., Yang, Z. L., and Pielke, R. A.: Assessment of three dynamical
climate downscaling methods using the Weather Research and Forecasting (WRF)
model, J. Geophys. Res.-Atmos., 113, D09112, https://doi.org/10.1029/2007jd009216, 2008.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao, T.: WRF simulation of a precipitation event over the Tibetan Plateau, China – an assessment using remote sensing and ground observations, Hydrol. Earth Syst. Sci., 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011, 2011.
Maussion, F., Scherer, D., Molg, T., Collier, E., Curio, J., and
Finkelnburg, R.: Precipitation Seasonality and Variability over the Tibetan
Plateau as Resolved by the High Asia Reanalysis, J. Climate, 27, 1910–1927, https://doi.org/10.1175/Jcli-D-13-00282.1, 2014.
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral nudging to
eliminate the effects of domain position and geometry in regional climate
model simulations, J. Geophys. Res.-Atmos., 109,
D13104, https://doi.org/10.1029/2003jd004495, 2004.
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Regional climate
simulations over North America: Interaction of local processes with improved
large-scale flow, J. Climate, 18, 1227–1246, https://doi.org/10.1175/Jcli3369.1, 2005.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97jd00237, 1997.
Moon, J., Cha, D. H., Lee, M., and Kim, J.: Impact of Spectral Nudging on
Real-Time Tropical Cyclone Forecast, J. Geophys. Res.-Atmos., 123, 12647–12660, https://doi.org/10.1029/2018jd028550, 2018.
Omrani, H., Drobinski, P., and Dubos, T.: Spectral nudging in regional
climate modelling: how strongly should we nudge?, Q. J. Roy. Meteor. Soc., 138, 1808–1813, 2012.
Omrani, H., Drobinski, P., and Dubos, T.: Optimal nudging strategies in
regional climate modelling: investigation in a Big-Brother experiment over
the European and Mediterranean regions, Clim. Dynam., 41, 2451–2470, https://doi.org/10.1007/s00382-012-1615-6, 2013.
Otte, T. L., Nolte, C. G., Otte, M. J., and Bowden, J. H.: Does Nudging
Squelch the Extremes in Regional Climate Modeling?, J. Climate, 25,
7046–7066, 2012.
Ou, T. H., Chen, D. L., Chen, X. C., Lin, C. G., Yang, K., Lai, H. W., and
Zhang, F. Q.: Simulation of summer precipitation diurnal cycles over the
Tibetan Plateau at the gray-zone grid spacing for cumulus parameterization,
Clim. Dynam., 54, 3525–3539, https://doi.org/10.1007/s00382-020-05181-x, 2020.
Palazzi, E., von Hardenberg, J., and Provenzale, A.: Precipitation in the
Hindu-Kush Karakoram Himalaya: Observations and future scenarios, J. Geophys. Res.-Atmos., 118, 85–100, https://doi.org/10.1029/2012jd018697, 2013.
Palmer, T. N. and Raisanen, J.: Quantifying the risk of extreme seasonal
precipitation events in a changing climate, Nature, 415, 512–514, https://doi.org/10.1038/415512a, 2002.
Sato, T., Yoshikane, T., Satoh, M., Miltra, H., and Fujinami, H.: Resolution
Dependency of the Diurnal Cycle of Convective Clouds over the Tibetan
Plateau in a Mesoscale Model, J. Meteorol. Soc. Jpn., 86a, 17–31, https://doi.org/10.2151/jmsj.86A.17, 2008.
Spero, T. L., Nolte, C. G., Mallard, M. S., and Bowden, J. H.: A Maieutic
Exploration of Nudging Strategies for Regional Climate Applications Using
the WRF Model, J. Appl. Meteorol. Clim., 57, 1883–1906, https://doi.org/10.1175/Jamc-D-17-0360.1, 2018.
Stauffer, D. R. and Seaman, N. L.: Multiscale 4-Dimensional Data
Assimilation, J. Appl. Meteorol., 33, 416–434, https://doi.org/10.1175/1520-0450(1994)033<0416:Mfdda>2.0.Co;2, 1994.
Su, F. G., Duan, X. L., Chen, D. L., Hao, Z. C., and Cuo, L.: Evaluation of
the Global Climate Models in the CMIP5 over the Tibetan Plateau, J. Climate,
26, 3187–3208, https://doi.org/10.1175/Jcli-D-12-00321.1, 2013.
Tang, J. P., Sun, X. G., Hui, P. H., Li, Y., Zhang, Q., and Liu, J. Y.:
Effects of spectral nudging on precipitation extremes and diurnal cycle over
CORDEX-East Asia domain, Int. J. Climatol., 38, 4903–4923, https://doi.org/10.1002/joc.5706,
2018.
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of
winter precipitation using an improved bulk microphysics scheme. Part I:
Description and sensitivity analysis, Mon. Weather Rev., 132, 519–542, https://doi.org/10.1175/1520-0493(2004)132<0519:Efowpu>2.0.Co;2, 2004.
von Storch, H., Langenberg, H., and Feser, F.: A spectral nudging technique
for dynamical downscaling purposes, Mon. Weather Rev., 128, 3664–3673, 2000.
Waldron, K. M., Paegle, J., and Horel, J. D.: Sensitivity of a spectrally
filtered and nudged limited-area model to outer model options, Mon. Weather Rev., 124, 529–547, https://doi.org/10.1175/1520-0493(1996)124<0529:Soasfa> 2.0.Co;2, 1996.
Wang, Y., Yang, K., Zhou, X., Chen, D. L., Lu, H., Ouyang, L., Chen, Y. Y.,
Lazhu, and Wang, B. B.: Synergy of orographic drag parameterization and high
resolution greatly reduces biases of WRF-simulated precipitation in central
Himalaya, Clim. Dynam., 54, 1729–1740, https://doi.org/10.1007/s00382-019-05080-w, 2020.
Wang,
Z. Q., Duan, A. M., Li, M. S., and He, B.: Influences of thermal forcing
over the slope/platform of the Tibetan Plateau on Asian summer monsoon :
Numerical studies with the WRF model, Chinese J. Geophys., 59, 3175–3187, https://doi.org/10.6038/cjg20160904, 2016.
Wei, G. H., Lu, H. S., Crow, W. T., Zhu, Y. H., Wang, J. Q., and Su, J. B.:
Comprehensive Evaluation of GPM-IMERG, CMORPH, and TMPA Precipitation
Products with Gauged Rainfall over Mainland China, Adv. Meteorol., 2018,
3024190, https://doi.org/10.1155/2018/3024190, 2018.
White, B. G., Paegle, J., Steenburgh, W. J., Horel, J. D., Swanson, R. T.,
Cook, L. K., Onton, D. J., and Miles, J. G.: Short-term forecast validation
of six models, Weather Forecast., 14, 84–108, https://doi.org/10.1175/1520-0434(1999)014<0084:Stfvos>2.0.Co;2, 1999.
Wu, G. X., Liu, Y. M., Wang, T. M., Wan, R. J., Liu, X., Li, W. P., Wang, Z.
Z., Zhang, Q., Duan, A. M., and Liang, X. Y.: The influence of mechanical
and thermal forcing by the Tibetan Plateau on Asian climate, J.
Hydrometeorol., 8, 770–789, https://doi.org/10.1175/Jhm609.1, 2007.
Xie, P. P., Joyce, R., Wu, S. R., Yoo, S. H., Yarosh, Y., Sun, F. Y., and
Lin, R.: Reprocessed, Bias-Corrected CMORPH Global High-Resolution
Precipitation Estimates from 1998, J. Hydrometeorol., 18, 1617–1641, https://doi.org/10.1175/Jhm-D-16-0168.1, 2017.
Xu, X. D., Zhou, M. Y., Chen, J. Y., Bian, L. G., Zhang, G. Z., Liu, H. Z.,
Li, S. M., Zhang, H. S., Zhao, Y. J., Suolongduoji, and Wang, J. Z.: A
comprehensive physical pattern of land-air dynamic and thermal structure on
the Qinghai-Xizang Plateau, Sci. China Ser. D, 45, 577–594, https://doi.org/10.1360/02yd9060, 2002.
Xu, X. D., Lu, C. G., Shi, X. H., and Gao, S. T.: World water tower: An
atmospheric perspective, Geophys. Res. Lett., 35,
L20815, https://doi.org/10.1029/2008gl035867, 2008.
Yang, L. Y., Wang, S. Y., Tang, J. P., Niu, X. R., and Fu, C. B.: Impact of
Nudging Parameters on Dynamical Downscaling over CORDEX East Asia Phase II
Domain: The Case of Summer 2003, J. Appl. Meteorol. Clim., 58, 2755–2771, https://doi.org/10.1175/Jamc-D-19-0152.1, 2019.
Zhao, P. and Chen, L. X.: Interannual variability of atmospheric heat
source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to
circulation, Adv. Atmos. Sci., 18, 106–116, 2001.
Zhou, S. W., Zheng, D., Qin, Y. L., Guo, D., Wang, C. H., and Hu, K. X.:
Comparison on variation features of the tropical tropopause pressure over
the Tibetan Plateau andthe other regions in the same latitudes, Trans. Atmos.
Sci., 42, 660–671, https://doi.org/10.13878/j.cnki.dqkxxb.20170112001, 2019 (in
Chinese).
Zhou, T. J. and Li, Z. X.: Simulation of the east asian summer monsoon
using a variable resolution atmospheric GCM, Clim. Dynam., 19, 167–180, https://doi.org/10.1007/s00382-001-0214-8, 2002.
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Spectral nudging is an effective dynamical downscaling method used to improve precipitation...