Articles | Volume 14, issue 5
https://doi.org/10.5194/gmd-14-2827-2021
https://doi.org/10.5194/gmd-14-2827-2021
Model evaluation paper
 | 
20 May 2021
Model evaluation paper |  | 20 May 2021

Development and evaluation of spectral nudging strategy for the simulation of summer precipitation over the Tibetan Plateau using WRF (v4.0)

Ziyu Huang, Lei Zhong, Yaoming Ma, and Yunfei Fu

Related authors

Quantifying the spatial-temporal patterns of land-atmosphere water, heat and CO2 flux exchange over the Tibetan Plateau from an observational perspective
Binbin Wang, Yaoming Ma, Zeyong Hu, Weiqiang Ma, Xuelong Chen, Cunbo Han, Zhipeng Xie, Yuyang Wang, Maoshan Li, Bin Ma, Xingdong Shi, Weimo Li, and Zhengling Cai
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-195,https://doi.org/10.5194/essd-2025-195, 2025
Preprint under review for ESSD
Short summary
Greenhouse gas measurement campaign of the Earth Summit Mission-2022: ground-based in situ and FTIR observations and contribute to satellite validation in the Qomolangma region
Minqiang Zhou, Yilong Wang, Minzheng Duan, Xiangjun Tian, Jinzhi Ding, Jianrong Bi, Yaoming Ma, Weiqiang Ma, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1293,https://doi.org/10.5194/egusphere-2025-1293, 2025
Short summary
Full-scale spectra of 15-year time series of near-surface horizontal wind speed on the north slope of Mt. Everest
Cunbo Han, Yaoming Ma, Weiqiang Ma, Fanglin Sun, Yunshuai Zhang, Wei Hu, Hanying Xu, Chunhui Duan, and Zhenhua Xi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1963,https://doi.org/10.5194/egusphere-2024-1963, 2024
Preprint archived
Short summary
Dataset of spatially extensive long-term quality-assured land–atmosphere interactions over the Tibetan Plateau
Yaoming Ma, Zhipeng Xie, Yingying Chen, Shaomin Liu, Tao Che, Ziwei Xu, Lunyu Shang, Xiaobo He, Xianhong Meng, Weiqiang Ma, Baiqing Xu, Huabiao Zhao, Junbo Wang, Guangjian Wu, and Xin Li
Earth Syst. Sci. Data, 16, 3017–3043, https://doi.org/10.5194/essd-16-3017-2024,https://doi.org/10.5194/essd-16-3017-2024, 2024
Short summary
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024,https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary

Related subject area

Atmospheric sciences
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary

Cited articles

Alexandru, A., de Elia, R., Laprise, R., Separovic, L., and Biner, S.: Sensitivity Study of Regional Climate Model Simulations to Large-Scale Nudging Parameters, Mon. Weather Rev., 137, 1666–1686, https://doi.org/10.1175/2008mwr2620.1, 2009. 
Bhatt, B. C., Sobolowski, S., and King, M. P.: Assessment of downscaled current and future projections of diurnal rainfall patterns for the Himalaya, J. Geophys. Res.-Atmos., 119, 12533–12545, https://doi.org/10.1002/2014jd022134, 2014. 
Bohner, J. and Lehmkuhl, F.: Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios, Boreas, 34, 220–231, https://doi.org/10.1080/03009480510012917, 2005. 
Bowden, J. H., Otte, T. L., Nolte, C. G., and Otte, M. J.: Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling, J. Climate, 25, 2805–2823, https://doi.org/10.1175/Jcli-D-11-00167.1, 2012. 
Bowden, J. H., Nolte, C. G., and Otte, T. L.: Simulating the impact of the large-scale circulation on the 2-m temperature and precipitation climatology, Clim. Dynam., 40, 1903–1920, https://doi.org/10.1007/s00382-012-1440-y, 2013. 
Download
Short summary
Spectral nudging is an effective dynamical downscaling method used to improve precipitation simulations of regional climate models (RCMs). However, the biases of the driving fields over the Tibetan Plateau (TP) would possibly introduce extra biases when spectral nudging is applied. The results show that the precipitation simulations were significantly improved when limiting the application of spectral nudging toward the potential temperature and water vapor mixing ratio over the TP.
Share