Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6523-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites
Adrien Napoly
CORRESPONDING AUTHOR
CNRM-Université de Toulouse, Météo-France/CNRS, Toulouse, France
Aaron Boone
CNRM-Université de Toulouse, Météo-France/CNRS, Toulouse, France
Théo Welfringer
Direction Départementale de l'Isère, Grenoble, France
Related authors
No articles found.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Belén Martí, Jannis Groh, Guylaine Canut, and Aaron Boone
EGUsphere, https://doi.org/10.5194/egusphere-2025-1783, https://doi.org/10.5194/egusphere-2025-1783, 2025
Short summary
Short summary
The characterization of vegetation at two sites proved insufficient to simulate adequately the evapotranspiration. A dry surface layer was implemented in the land surface model SURFEX-ISBA v9.0. It is compared to simulations without a soil resistance. The application to an alfalfa site and a natural grass site in semiarid conditions results in an improvement in the estimation of the latent heat flux. The surface energy budget and the soil and vegetation characteristics are explored in detail.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Jari-Pekka Nousu, Matthieu Lafaysse, Giulia Mazzotti, Pertti Ala-aho, Hannu Marttila, Bertrand Cluzet, Mika Aurela, Annalea Lohila, Pasi Kolari, Aaron Boone, Mathieu Fructus, and Samuli Launiainen
The Cryosphere, 18, 231–263, https://doi.org/10.5194/tc-18-231-2024, https://doi.org/10.5194/tc-18-231-2024, 2024
Short summary
Short summary
The snowpack has a major impact on the land surface energy budget. Accurate simulation of the snowpack energy budget is difficult, and studies that evaluate models against energy budget observations are rare. We compared predictions from well-known models with observations of energy budgets, snow depths and soil temperatures in Finland. Our study identified contrasting strengths and limitations for the models. These results can be used for choosing the right models depending on the use cases.
Malak Sadki, Simon Munier, Aaron Boone, and Sophie Ricci
Geosci. Model Dev., 16, 427–448, https://doi.org/10.5194/gmd-16-427-2023, https://doi.org/10.5194/gmd-16-427-2023, 2023
Short summary
Short summary
Predicting water resource evolution is a key challenge for the coming century.
Anthropogenic impacts on water resources, and particularly the effects of dams and reservoirs on river flows, are still poorly known and generally neglected in global hydrological studies. A parameterized reservoir model is reproduced to compute monthly releases in Spanish anthropized river basins. For global application, an exhaustive sensitivity analysis of the model parameters is performed on flows and volumes.
Jaime Gaona, Pere Quintana-Seguí, María José Escorihuela, Aaron Boone, and María Carmen Llasat
Nat. Hazards Earth Syst. Sci., 22, 3461–3485, https://doi.org/10.5194/nhess-22-3461-2022, https://doi.org/10.5194/nhess-22-3461-2022, 2022
Short summary
Short summary
Droughts represent a particularly complex natural hazard and require explorations of their multiple causes. Part of the complexity has roots in the interaction between the continuous changes in and deviation from normal conditions of the atmosphere and the land surface. The exchange between the atmospheric and surface conditions defines feedback towards dry or wet conditions. In semi-arid environments, energy seems to exceed water in its impact over the evolution of conditions, favoring drought.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Cited articles
Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., and Burakowski, E. A.: Modeling canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0), Geosci. Model Dev., 11, 1467–1496, https://doi.org/10.5194/gmd-11-1467-2018, 2018. a
Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S.,
Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W.,
Randall, D. A., Soden, B. J., Tselioudis, G., G., and Webb, M. J.: How well
do we understand and evaluate climate change feedback processes?, J. Climate,
19, 3445–3482, https://doi.org/10.1175/JCLI3819.1, 2006. a
Boone, A., Masson, V., Meyers, T., and Noilhan, J.: he influence of the
inclusion of soil freezing on simulations by a soil-vegetation-atmosphere
transfer scheme, J. Appl. Meteorol., 9, 1544–1569, 2000. a
Boone, A., Habets, F., Noilhan, J., Clark, D., Dirmeyer, P., Fox, S., Gusev,
Y., Haddeland, I., Koster, R., Lohmann, D., Mahanama, S., Mitchell, K.,
Nasonova, O., Niu, G.-Y., Pitman, A., Polcher, J., Shmakin, A. B., Tanaka,
K., van den Hurk, B., Vérant, S., Verseghy, D., Viterbo, P., and Yang,
Z.-L.: The Rhone-Aggregation Land Surface Scheme Intercomparison Project: An
Overview, J. Climate, 17, 187–208,
https://doi.org/10.1175/1520-0442(2004)017<0187:TRLSSI>2.0.CO;2, 2004. a
Boone, A., Samuelsson, P., Gollvik, S., Napoly, A., Jarlan, L., Brun, E., and Decharme, B.: The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description, Geosci. Model Dev., 10, 843–872, https://doi.org/10.5194/gmd-10-843-2017, 2017. a, b, c, d, e, f, g, h, i
Bowling, L. C., Lettenmaier, D. P., Nijssen, B., Graham, L. P., Clark, D. B.,
Maayar, M. E., Essery, R., Goers, S., Gusev, Y. M., Habets, F., Hurk, B.
V. D., Jin, J., Kahan, D., Lohmann, D., Ma, X., Mahanama, S., Mocko, D.,
Nasonova, O., Niu, G. Y., Samuelsson, P., Shmakin, A. B., Takata, K.,
Verseghy, D., Viterbo, P., Xia, Y., Xue, Y., and Yang, Z. L.: Simulation of
high-latitude hydrological processes in the Torne-Kalix basin: PILPS Phase
2(e) 1: Experiment description and summary intercomparisons, Global Planet.
Change, 38, 1–30, https://doi.org/10.1016/S0921-8181(03)00003-1, 2003. a
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne, M.,
Olioso, A., and Wigneron, J.-P.: An interactive vegetation SVAT model tested
against data from six contrasting sites, Agr. Forest Meteorol., 92, 73–95,
1998. a
Carrer, D., Roujean, J.-L., Lafont, S., Calvet, J.-C., Boone, A., Decharme, B.,
Delire, C., and Gastellu-Etchegorry, J.-P.: A canopy radiative transfer
scheme with explicit FAPAR for the interactive vegetation model ISBA-A-gs:
Impact on carbon fluxes, J. Geophys. Res., 118, 888–903,
2013. a
Carrera, M. L., Bélair, S., and Bilodeau, B.: The Canadian Land Data
Assimilation System (CaLDAS): Description and Synthetic Evaluation Study, J.
Hydrometeorol., 16, 1293–1314, https://doi.org/10.1175/JHM-D-14-0089.1, 2015. a
Champeaux, J., Masson, V., and Chauvin, F.: ECOCLIMAP: a global database of
land surface parameters at 1 km resolution, Meteorol. Appl., 12, 29–32, 2005. a
Chapin, F. S., Sturm, M., Serreze, M. C., Mcfadden, J. P., Key, J. R., Lloyd,
A. H., Mcguire, A. D., Rupp, T. S., S., T., and Lynch, A. H.: Role of
Land-Surface Changes in Arctic Summer Warming, Science, 310, 657–660,
https://doi.org/10.1126/science.1117368, 2005. a
Clapp, R. and Hornberger, G.: Empirical equations for some soil hydraulic
properties, Water Resour. Res., 14, 601–604, 1978. a
CNRM: Open-SURFEX code package, SURFEX website, available at: https://www.umr-cnrm.fr/surfex/spip.php?article387, last access: July 2020. a
Deardorff, J. W.: Efficient prediction of ground surface temperature and
moisture, with inclusion of a layer of vegetation, J. Geophys. Res., 83,
1889–1903, 1978. a
Decharme, B., Boone, A., Delire, C., and Noilhan, J.: Local evaluation of the
Interaction between Soil Biosphere Atmosphere soil multilayer diffusion
scheme using four pedotransfer functions, J. Geophys. Res., 116, D20126,
https://doi.org/10.1029/2011JD016002, 2011. a
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016. a, b, c, d, e, f
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A.,
Saint-Martin, D., Séférian, R., Sénési, S., and Voldoire, A.:
Recent Changes in the ISBA-CTRIP Land Surface System for Use in the CNRM-CM6
Climate Model and in Global Off-Line Hydrological Applications, J.
Adv. Model. Earth Sy., 11, 1207–1252, 2019. a, b, c, d, e
Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Beljaars, A., Schär,
C., and Elder, K.: An improved snow scheme for the ecmwf land surface model:
Description and offline validation, J. Hydrometeorol., 11, 899–916,
https://doi.org/10.1175/2010JHM1249.1, 2010. a
Essery, R., Rutter, N., Pomeroy, J., Baxter, R., Stähli, M., Gustafsson, D.,
Barr, A., Bartlett, P., and Elder, K.: SNOWMPIP2: An Evaluation of Forest
Snow Process Simulations, B. Am. Meteorol. Soc., 90, 1120–1135,
https://doi.org/10.1175/2009BAMS2629.1, 2009. a
Etchevers, P., Martin, E., Brown, R., Fierz, C., Lejeune, Y., Bazile, E.,
Boone, E., Dai, Y.-J., Essery, R., Fernandez, A., Nasonova, O.,
Pyles, R. D., Schlosser, A., Shmakin, A. B., Smirnova, T. G., Strasser, U., Verseghy, D., Yamazaki, T., and
Yang, Z.-L.: Validation of the
energy budget of an alpine snowpack simulated by several snow models (Snow
MIP project), Ann. Glaciol., 38, 150–158, 2004. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M.:
Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere
between 1979 and 2008, Nat. Geosci., 4, 151–155, 2011. a
Gouttevin, I., Menegoz, M., Dominé, F., Krinner, G., Koven, C., Ciais, P.,
Tarnocai, C., and Boike, J.: How the insulating properties of snow affect
soil carbon distribution in the continental pan-Arctic area, J. Geophys.
Res.-Biogeo., 117, 1–11, https://doi.org/10.1029/2011JG001916, 2012. a
Gouttevin, I., Lehning, M., Jonas, T., Gustafsson, D., and Mölder, M.: A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741), Geosci. Model Dev., 8, 2379–2398, https://doi.org/10.5194/gmd-8-2379-2015, 2015. a
Grundstein, A., Todhunter, P., and Mote, T.: Snowpack control over the thermal
offset of air and soil temperatures in eastern North Dakota, Geophys. Res.
Let., 32, L08503, https://doi.org/10.1029/2005GL022532, 2005. a
Habets, F., Boone, A., Champeaux, J., Etchevers, P., Franchisteguy, L.,
Leblois, E., Ledoux, E., Moigne, P. L., Martin, E., Morel, S., Noilhan, J.,
Segui, P. Q., Rousset-Regimbeau, F., and Viennot, P.: The SAFRAN-ISBA-MODCOU
hydrometeorological model applied over France, J. Geophys. Res., 113,
D06113, https://doi.org/10.1029/2007JD008548, 2008. a, b
Harding, R. and Pomeroy, J.: The energy balance of the winter boreal landscape,
J. Climate, 9, 2778–2787, 1996. a
Helbig, N., Moeser, D., Teich, M., Vincent, L., Lejeune, Y., Sicart, J.-E., and Monnet, J.-M.: Snow processes in mountain forests: interception modeling for coarse-scale applications, Hydrol. Earth Syst. Sci., 24, 2545–2560, https://doi.org/10.5194/hess-24-2545-2020, 2020. a
Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S., Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Ménard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G., Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A., Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V., Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke, T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V., Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov, D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.: ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks, Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, 2018. a, b
Lejeune, Y., Dumont, M., Panel, J.-M., Lafaysse, M., Lapalus, P., Le Gac, E., Lesaffre, B., and Morin, S.: 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude), Earth Syst. Sci. Data, 11, 71–88, https://doi.org/10.5194/essd-11-71-2019, 2019. a
Lo, A. K.-F.: Determination of zero-plane displacement and roughness length of
a forest canopy using profiles of limited height, Bound.-Lay. Meteorol.,
75, 381–402, 1995. a
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a
Menard, C. and Essery, R.: ESM-SnowMIP meteorological and evaluation datasets at ten reference sites (in situ and bias corrected reanalysis data), PANGAEA, available at: https://doi.org/10.1594/PANGAEA.897575, last access: March 2019. a
Menard, C., Essery, R., Arduini, G., Bartlett, P., Boone, A., Brutel-Vuilmet,
C., Burke, E., Colin, J., Cuntz, M., Dai, Y., Decharme, B., Dutra, E., Fang,
L., Fierz, C., Gusev, Y., Hagemann, S., Haverd, V., Kim, H., Krinner, G.,
Lafaysse, M., Marke, T., Nasonova, O., Nitta, T., Niwano, M., Pomeroy, J.,
Schaedler, G., Semenov, V., Smirnova, T., Strasser, U., Swenson, S., Turkov,
D., Wever, N., and Yuan, H.: Disentangling scientific from human errors in
a snow model intercomparison, B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-19-0329.1, online first,
2020. a
Molotch, N. P., Blanken, P. D., Williams, M. W., Turnipseed, A. A., Monson,
R. K., and Margulis, S. A.: Estimating sublimation of intercepted and
sub-canopy snow using eddy covariance systems, Hydrol. Process., 21, 1567–1575, 2007. a
Montesi, J., Elder, K., Schmidt, R., and Davis, R. E.: Sublimation of
intercepted snow within a subalpine forest canopy at two elevations, J. Hydrometeorol., 5, 763–773, 2004. a
Nachtergaele, F. and Batjes, N.: Harmonized world soil database, FAO Rome,
Italy, available at: http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/ (last access: 2015), 2012. a
Napoly, A., Boone, A., Samuelsson, P., Gollvik, S., Martin, E., Seferian, R., Carrer, D., Decharme, B., and Jarlan, L.: The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites, Geosci. Model Dev., 10, 1621–1644, https://doi.org/10.5194/gmd-10-1621-2017, 2017. a, b, c, d, e, f, g, h, i, j
Noilhan, J. and Mahfouf, J.-F.: The ISBA land surface parameterisation scheme,
Global Planet. Change, 13, 145–159, 1996. a
Noilhan, J. and Planton, S.: A simple parameterization of land surface
processes for meteorological models, Mon. Weather Rev., 117, 536–549, 1989. a
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E.,
Lawrence, P. J., Levis, S., Swenson, S. C., P. E. Thornton, A. D., A.,
Decker, M., Dickinson, R., Feddema, J., C. L. Heald, F. H., Lamarque, J. F.,
Mahowald, N., Niu, G. Y., Qian, T., Randerson, J., Running, S., Sakaguchi,
K., A. Slater, R. S., Wang, A., L., Z., and Zeng, X.: Technical Description
of version 4.0 of the Community Land Model (CLM), NCAR Technical Note
TN-478+STR, NCAR, NCAR, P.O. Box 3000, Boulder, CO, USA, 80307-3000,
https://doi.org/10.5065/D6FB50WZ, 2010. a
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020. a
Paquin, J.-P. and Sushama, L.: On the Arctic near-surface permafrost and
climate sensitivities to soil and snow model formulations in climate models,
Clim. Dynam., 44, 203–228, https://doi.org/10.1007/s00382-014-2185-6., 2015. a
Pomeroy, J., Parviainen, J., Hedstrom, N., and Gray, D.: Coupled modelling of
forest snow interception and sublimation, Hydrol. Process., 12,
2317–2337, 1998. a
Qu, X. and Hall, A.: On the persistent spread in snow-albedo feedback, Clim.
Dynam., 42, 69–81, https://doi.org/10.1007/s00382-013-1774-0, 2014. a, b
Rutter, N., Essery, R., Pomeroy, J., Altimir, N., Andreadis, K., Baker, I.,
Barr, A., Bartlett, P., Boone, A., Deng, H., Douville, H., Dutra, E., Elder,
K., Ellis, C., Feng, X., Gelfan, A., Goodbody, A., Gusev, Y., Gustafsson, D.,
Hellström, R., Hirabayashi, Y., Hirota, T., Jonas, T., Koren, V., Kuragina,
A., Lettenmaier, D., Li, W.-P., Luce, C., Martin, E., Nasonova, O., Pumpanen,
J., Pyles, R. D., Samuelsson, P., Sandells, M., Schädler, G., Shmakin, A.,
Smirnova, T. G., Stähli, M., Stöckli, R., Strasser, U., Su, H., Suzuki, K.,
Takata, K., Tanaka, K., Thompson, E., Vesala, T., Viterbo, P., Wiltshire, A.,
Xia, K., Xue, Y., and Yamazaki, T.: Evaluation of forest snow processes
models (SnowMIP2), J. Geophys. Res., 114, D06111,
https://doi.org/10.1029/2008JD011063, 2009. a, b
Ryder, J., Polcher, J., Peylin, P., Ottlé, C., Chen, Y., van Gorsel, E., Haverd, V., McGrath, M. J., Naudts, K., Otto, J., Valade, A., and Luyssaert, S.: A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations, Geosci. Model Dev., 9, 223–245, https://doi.org/10.5194/gmd-9-223-2016, 2016. a
Saux-Picart, S., Ottlé, C., Perrier, A., Decharme, B., Coudert, B., Zribi,
M., Boulain, N., Cappelaere, B., and Ramier, D.: SEtHyS_Savannah: A multiple
source land surface model applied to Sahelian landscapes, Agr.
Forest Meteor., 149, 1421–1432, 2009. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,
F., Lac, C., and Masson, V.: The AROME-France convective-scale operational
model, Mon. Weather Rev., 139, 976–991, 2011. a
Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A Simple Biosphere
Model (SiB) for use within General Ciculation Models, J. Atmos. Sci., 43,
505–531, 1986. a
Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic amplification:
A research synthesis, Global Planet. Change, 77, 85–96,
https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011. a
Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J.,
Henderson-Sellers, A., Robock, A., Vinnikov, K. Y., Entin, J., Mitchell, K.,
Chen, F., Boone, A., Etchevers, P., Habets, F., Noilhan, J., Braden, H., Cox,
P. M., de Rosnay, P., Dickinson, R. E., Yang, Z.-L., Dai, Y.-J., Zeng, Q.,
Duan, Q., Koren, V., Schaake, S., Gedney, M., Gusev, Y. M., Nasonova, O. N.,
Kim, J., Kowalczyk, E. A., Shmakin, A. B., Smirnova, T. G., Verseghy, D.,
Wetzel, P., and Xue, Y.: The Representation of Snow in Land Surface Schemes:
Results from PILPS 2(d), J. Hydrometeorol., 2, 7–25,
https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;, 2001. a
Snow, A. D., Christensen, S. D., Swain, N. R., Nelson, E. J., Ames, D. P.,
Jones, N. L., Ding, D., Noman, N. S., David, C. H., Pappenberger, F., and
Zsoter, E.: A High‐Resolution National‐Scale Hydrologic Forecast System
from a Global Ensemble Land Surface Model, J. Am. Water Resour. As., 52,
950–964, https://doi.org/10.1111/1752-1688.12434, 2016.
a
Stieglitz, M., Déry, S., Romanovsky, V., and Osterkamp, T.: The role of
snow cover in the warming of arctic permafrost, Geophys. Res. Lett.,
30, 1721, https://doi.org/10.1029/2003GL017337, 2003. a
Storck, P., Lettenmaier, D. P., and Bolton, S. M.: Measurement of snow
interception and canopy effects on snow accumulation and melt in a
mountainous maritime climate, Oregon, United States, Water Resour.
Res., 38, 5-1–5-16, 2002. a
Thackeray, C. W., Fletcher, C. G., and Derksen, C.: Quantifying the skill of
CMIP5 models in simulating seasonal albedo and snow cover evolution, J.
Geophys. Res., 120, 5831–5849, https://doi.org/10.1002/2015JD023325, 2015. a
Thackeray, C. W., Qu, X., and Hall, A.: Why do models produce spread in snow
albedo feedback, Geophys. Res. Lett., 45, 6223–6231,
https://doi.org/10.1029/2018GL078493, 2018. a
Todt, M., Rutter, N., Fletcher, C., Wake, L., Bartlett, P., Jonas, T., Kropp,
H., Loranty, M., and Webster, C.: Simulation of longwave enhancement in
boreal and montane forests, J. Geophys. Res.-Atmos.,
123, 13–731, 2018. a
Twine, T. E., Kustas, W., Norman, J., Cook, D., Houser, P., Meyers, T.,
Prueger, J., Starks, P., and Wesely, M.: Correcting eddy-covariance flux
underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, 2000. a
Vionnet, V., Brun, E., Morin, S., Boone, A., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2, Geosci. Model Dev., 5, 773–791, https://doi.org/10.5194/gmd-5-773-2012, 2012. a
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier,
P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, Chris Grelle, A., Ibrom,
A., Law, B., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W.,
Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET
sites, Agr. Forest Meteorol., 113, 223–243, 2002. a
Xue, Y., Sellers, P. J., Kinter, J. L., and Shukla, J.: A simplified Biosphere
Model for Global Climate Studies, J. Climate, 4, 345–364, 1991. a
Yang, R. and Friedl, M. A.: Determination of roughness lengths for heat and
momentum over Boreal forests, Bound.-Lay. Meteorol., 107, 581–603, 2003. a
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M.,
Longuevergne, L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The
community Noah land surface model with multi-parameterization options
(Noah-MP): 2. Evaluation over global river basins, J. Geophys. Res., 116, D12110,
https://doi.org/10.1029/2010JD015140, 2011. a
Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime:
An overview, Rev. Geophys., 43, RG4002, https://doi.org/10.1029/2004RG000157, 2005. a
Short summary
Accurate modeling of snow impact on surface energy and mass fluxes is required from land surface models. This new version of the SURFEX model improves the representation of the snowpack. In particular, it prevents its ablation from occurring too early in the season, which also leads to better soil temperatures and energy fluxes toward the atmosphere. This was made possible with a more explicit and distinct representation of each layer that constitutes the surface (soil, snow, and vegetation).
Accurate modeling of snow impact on surface energy and mass fluxes is required from land surface...