Articles | Volume 13, issue 12
https://doi.org/10.5194/gmd-13-6425-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-6425-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inequality-constrained free-surface evolution in a full Stokes ice flow model (evolve_glacier v1.1)
Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria
Alexander Helmut Jarosch
ThetaFrame Solutions, Hörfarterstrasse 14, Kufstein, Austria
Related authors
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Alexander H. Jarosch, Paul Hofer, and Christoph Spötl
The Cryosphere, 18, 4811–4816, https://doi.org/10.5194/tc-18-4811-2024, https://doi.org/10.5194/tc-18-4811-2024, 2024
Short summary
Short summary
Mechanical damage to stalagmites is commonly observed in mid-latitude caves. In this study we investigate ice flow along the cave bed as a possible mechanism for stalagmite damage. Utilizing models which simulate forces created by ice flow, we study the structural integrity of different stalagmite geometries. Our results suggest that structural failure of stalagmites caused by ice flow is possible, albeit unlikely.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Alexander H. Jarosch, Eyjólfur Magnússon, Krista Hannesdóttir, Joaquín M. C. Belart, and Finnur Pálsson
The Cryosphere, 18, 2443–2454, https://doi.org/10.5194/tc-18-2443-2024, https://doi.org/10.5194/tc-18-2443-2024, 2024
Short summary
Short summary
Geothermally active regions beneath glaciers not only influence local ice flow as well as the mass balance of glaciers but also control changes of subglacial water reservoirs and possible subsequent glacier lake outburst floods. In Iceland, such outburst floods impose danger to people and infrastructure and are therefore monitored. We present a novel computer-simulation-supported method to estimate the activity of such geothermal areas and to monitor its evolution.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Gabriella Koltai, Christoph Spötl, Alexander H. Jarosch, and Hai Cheng
Clim. Past, 17, 775–789, https://doi.org/10.5194/cp-17-775-2021, https://doi.org/10.5194/cp-17-775-2021, 2021
Short summary
Short summary
This paper utilises a novel palaeoclimate archive from caves, cryogenic cave carbonates, which allow for precisely constraining permafrost thawing events in the past. Our study provides new insights into the climate of the Younger Dryas (12 800 to 11 700 years BP) in mid-Europe from the perspective of a high-elevation cave sensitive to permafrost development. We quantify seasonal temperature and precipitation changes by using a heat conduction model.
Cited articles
Alexiades, V.: Mathematical Modeling of Melting and Freezing
Processes, Taylor & Francis, 1992. a
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,
Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project
Version 1.5, Arch. Numerical Softw., 3, 9–23, https://doi.org/10.11588/ans.2015.100.20553,
2015. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A.,Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G., May, D. A., Curfman McInnes, L., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith,
B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Web page,
available at: http://www.mcs.anl.gov/petsc (last access: 2020), 2019. a, b, c
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley,
M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan,
P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Users
Manual, Tech. Rep. ANL-95/11 – Revision 3.9, Argonne National Laboratory,
available at: http://www.mcs.anl.gov/petsc (last access: 2020), 2020. a, b
Barrenechea, G. R., John, V., Knobloch, P., and Rankin, R.: A unified analysis
of algebraic flux correction schemes for convection–diffusion equations,
SeMA Journal, 75, 655–685, 2018. a
Bochev, P. B., Gunzburger, M. D., and Shadid, J. N.: Stability of the SUPG
finite element method for transient advection–diffusion problems, Comput.
Method. Appl. M., 193, 2301–2323, https://doi.org/10.1016/j.cma.2004.01.026, 2004. a, b, c, d
Brinkerhoff, D. J. and Johnson, J. V.: Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS, The Cryosphere, 7, 1161–1184, https://doi.org/10.5194/tc-7-1161-2013, 2013. a, b, c
Bueler, E.: Computing glacier geometry in nonlinear complementarity problem
form, 14th Copper Mountain Conference on Iterative Methods, 20–25 March 2016, Colorado,
2016b. a
Bueler, E., Brown, J., and Lingle, C.: Exact solutions to the
thermomechanically coupled shallow-ice approximation: effective tools for
verification, J. Glaciol., 53, 499–516, 2007. a
Burman, E. and Ern, A.: Nonlinear diffusion and discrete maximum principle for
stabilized Galerkin approximations of the convection–diffusion-reaction
equation, Comput. Method. Appl. M., 191, 3833–3855, 2002. a
Donea, J. and Huerta, A.: Finite element methods for flow problems, John Wiley
& Sons, 2003. a
Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949–970, https://doi.org/10.5194/tc-11-949-2017, 2017. a, b
Flowers, G. E., Jarosch, A. H., Belliveau, P. T., and Fuhrman, L. A.:
Short-term velocity variations and sliding sensitivity of a slowly surging
glacier, Ann. Glaciol., 57, 71–83, 2016. a
Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M., Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318, https://doi.org/10.5194/gmd-6-1299-2013, 2013. a
Goldberg, D. N., Snow, K., Holland, P., Jordan, J. R., Campin, J.-M., Heimbach, P., Arthern, R., and Jenkins, A.: Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z -coordinate ocean model, Ocean Model., 125, 45–60, https://doi.org/10.1016/j.ocemod.2018.03.005, 2018. a
Gottlieb, S. and Shu, C.-W.: Total variation diminishing Runge-Kutta schemes,
Math. Comput., 67, 73–85, 1998. a
GRASS Development Team: Geographic Resources Analysis Support System (GRASS
GIS) Software, Open Source Geospatial Foundation, USA,
available at: https://grass.osgeo.org (last access: 2019), 2018. a
Gudmundsson, G. H.: UaSource, available at: https://github.com/GHilmarG/UaSource, last access: 15 May 2019. a
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012. a
Hughes, T. J. R. and Brooks, A.: A theoretical framework for
Petrov-Galerkin methods with discontinuous weighting functions:
application to the streamline-upwind procedure., in: Finite Element in
Fluids, edited by: Gallagher, R. H., vol. 4, Wiley & Sons, 1982. a
Ito, K. and Kunisch, K.: Lagrange Multiplier Approach to Variational
Problems and Applications, Society for Industrial and Applied
Mathematics, 2008. a
Jarosch, A. H.: Icetools: A full Stokes finite element model for glaciers, Comput. Geosci., 34, 1005–1014, https://doi.org/10.1016/j.cageo.2007.06.012,
2008. a, b
Jarosch, A. H., Schoof, C. G., and Anslow, F. S.: Restoring mass conservation to shallow ice flow models over complex terrain, The Cryosphere, 7, 229–240, https://doi.org/10.5194/tc-7-229-2013, 2013. a, b, c
John, V. and Novo, J.: Error analysis of the SUPG finite element
discretization of evolutionary convection-diffusion-reaction equations, SIAM
J. Numer. A., 49, 1149–1176, https://doi.org/10.1137/100789002, 2011. a
John, V., Kaya, S., and Novo, J.: Finite Element Error Analysis Of A Mantle
Convection Model, Int. J. Num. Anal. Model, 15, 677–698, 2018a. a
Jouvet, G. and Bueler, E.: Steady, Shallow Ice Sheets As Obstacle Problems:
Well-Posedness And Finite Element Approximation, SIAM J. Appl.
Math., 72, 1292–1314, https://doi.org/10.1137/110856654, 2012. a, b, c
LeVeque, R.: High-resolution conservative algorithms for advection in
incompressible flow, SIAM J. Numer. A., 33, 627–665, https://doi.org/10.1137/0733033,
1996. a, b
Logg, A., Mardal, K.-A., and Wells, G. (Eds.): Automated Solution of
Differential Equations by the Finite Element Method,
Lecture Notes in Computational Science and Engineering, vol. 84,
Springer, 2012. a
Mahaffy, M. W.: A three-dimensional numerical model of ice sheets: tests on the
Barnes Ice Cap, Northwest Territories, J. Geophys. Res., 81,
1059–1066, 1976. a
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909–931, https://doi.org/10.5194/gmd-12-909-2019, 2019. a
Schoof, C.: Marine ice sheet dynamics. Part 2. A Stokes flow contact
problem, J. Fluid Mech., 679, 122–155, https://doi.org/10.1017/jfm.2011.129, 2011. a
Schoof, C., Rada, C. A., Wilson, N. J., Flowers, G. E., and Haseloff, M.: Oscillatory subglacial drainage in the absence of surface melt, The Cryosphere, 8, 959–976, https://doi.org/10.5194/tc-8-959-2014, 2014. a
Wheler, B. A., MacDougall, A. H., Flowers, G. E., Petersen, E. I., Whitfield,
P. H., and Kohfeld, K. E.: Effects of temperature forcing provenance and
extrapolation on the performance of an empirical glacier-melt model, Arct.
Antarct. Alp. Res., 46, 379–393, 2014. a
Wilson, N. J., Flowers, G. E., and Mingo, L.: Comparison of thermal structure
and evolution between neighboring subarctic glaciers, J. Geophys. Res.-Earth,
118, 1443–1459, 2013. a
Wirbel, A.: awirbel/debadvect: Initial release, Zenodo, https://doi.org/10.5281/zenodo.1139804, 2018. a
Wirbel, A.: awirbel/evolve_glacier: v1.1, Zenodo, https://doi.org/10.5281/zenodo.3734021, 2020a. a
Wirbel, A.: evolve_glacier, available at: https://github.com/awirbel/evolve_glacier, last access: 2020b. a
Wirbel, A., Jarosch, A. H., and Nicholson, L.: Modelling debris transport within glaciers by advection in a full-Stokes ice flow model, The Cryosphere, 12, 189–204, https://doi.org/10.5194/tc-12-189-2018, 2018. a, b, c, d
Zwinger, T. and Moore, J. C.: Diagnostic and prognostic simulations with a full Stokes model accounting for superimposed ice of Midtre Lovénbreen, Svalbard, The Cryosphere, 3, 217–229, https://doi.org/10.5194/tc-3-217-2009, 2009. a
Short summary
We present an open-source numerical tool to simulate the free-surface evolution of gravity-driven flows (e.g. glaciers) constrained by bed topography. No ad hoc post-processing is required to enforce positive ice thickness and mass conservation. We utilise finite elements, define benchmark tests, and showcase glaciological examples. In addition, we provide a thorough analysis of the applicability and robustness of different spatial stabilisation and time discretisation methods.
We present an open-source numerical tool to simulate the free-surface evolution of...