Articles | Volume 13, issue 2
https://doi.org/10.5194/gmd-13-521-2020
https://doi.org/10.5194/gmd-13-521-2020
Development and technical paper
 | 
11 Feb 2020
Development and technical paper |  | 11 Feb 2020

Implementation of a roughness sublayer parameterization in the Weather Research and Forecasting model (WRF version 3.7.1) and its evaluation for regional climate simulations

Junhong Lee, Jinkyu Hong, Yign Noh, and Pedro A. Jiménez

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Jinkyu Hong on behalf of the Authors (21 Dec 2019)  Manuscript 
ED: Publish subject to technical corrections (13 Jan 2020) by Jatin Kala
AR by Jinkyu Hong on behalf of the Authors (13 Jan 2020)  Author's response   Manuscript 
Download
Short summary
As the computing power increases, the grid size of atmospheric models moves toward the gray zone of turbulence (the scales on the order of the energy-containing range). Nevertheless, the roughness sublayer, which is a compartment of the inertial sublayer, has not been considered in high-resolution mesoscale models. This study coupled a roughness sublayer parameterization into the Weather Research and Forecasting model and evaluated its performance to simulate climate near the Earth's surface.