Articles | Volume 13, issue 8
https://doi.org/10.5194/gmd-13-3553-2020
https://doi.org/10.5194/gmd-13-3553-2020
Development and technical paper
 | 
07 Aug 2020
Development and technical paper |  | 07 Aug 2020

A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0)

Yilin Fang, Xingyuan Chen, Jesus Gomez Velez, Xuesong Zhang, Zhuoran Duan, Glenn E. Hammond, Amy E. Goldman, Vanessa A. Garayburu-Caruso, and Emily B. Graham

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yilin Fang on behalf of the Authors (11 May 2020)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (21 May 2020) by Andrew Yool
RR by Anonymous Referee #2 (08 Jun 2020)
RR by Anonymous Referee #3 (01 Jul 2020)
ED: Publish subject to technical corrections (09 Jul 2020) by Andrew Yool
AR by Yilin Fang on behalf of the Authors (11 Jul 2020)  Author's response   Manuscript 
Download
Short summary
Surface water quality along river corridors can be improved by the area of the stream bed and stream bank in which stream water mixes with shallow groundwater or hyporheic zones (HZs). These zones are ubiquitous and dominated by microorganisms that can process the dissolved nutrients exchanged at this interface of these zones. The modulation of surface water quality can be simulated by connecting the channel water and HZs through hyporheic exchanges using multirate mass transfer representation.