Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 13, issue 4
Geosci. Model Dev., 13, 1925–1943, 2020
https://doi.org/10.5194/gmd-13-1925-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: CoMet: a mission to improve our understanding and to better...

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Geosci. Model Dev., 13, 1925–1943, 2020
https://doi.org/10.5194/gmd-13-1925-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 16 Apr 2020

Model evaluation paper | 16 Apr 2020

Hindcasting and forecasting of regional methane from coal mine emissions in the Upper Silesian Coal Basin using the online nested global regional chemistry–climate model MECO(n) (MESSy v2.53)

Anna-Leah Nickl et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Anna-Leah Nickl on behalf of the Authors (26 Feb 2020)  Author's response    Manuscript
ED: Publish as is (15 Mar 2020) by Jason Williams
Publications Copernicus
Download
Short summary
Based on the global and regional chemistry–climate model system MECO(n), we implemented a forecast system to support the planning of measurement campaign research flights with chemical weather forecasts. We applied this system for the first time to provide 6 d forecasts in support of the CoMet 1.0 campaign targeting methane emitted from coal mining ventilation shafts in the Upper Silesian Coal Basin in Poland. We describe the new forecast system and evaluate its forecast skill.
Based on the global and regional chemistry–climate model system MECO(n), we implemented a...
Citation