Journal cover Journal topic
Geoscientific Model Development An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.240
IF5.240
IF 5-year value: 5.768
IF 5-year
5.768
CiteScore value: 8.9
CiteScore
8.9
SNIP value: 1.713
SNIP1.713
IPP value: 5.53
IPP5.53
SJR value: 3.18
SJR3.18
Scimago H <br class='widget-line-break'>index value: 71
Scimago H
index
71
h5-index value: 51
h5-index51
GMD | Articles | Volume 12, issue 7
Geosci. Model Dev., 12, 2657–2678, 2019
https://doi.org/10.5194/gmd-12-2657-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Hydrological cycle in the Mediterranean (ACP/AMT/GMD/HESS/NHESS/OS...

Geosci. Model Dev., 12, 2657–2678, 2019
https://doi.org/10.5194/gmd-12-2657-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Model evaluation paper 08 Jul 2019

Model evaluation paper | 08 Jul 2019

The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX)

Nadia Fourrié et al.

Related authors

Update of Infrared Atmospheric Sounding Interferometer (IASI) channel selection with correlated observation errors for numerical weather prediction (NWP)
Olivier Coopmann, Vincent Guidard, Nadia Fourrié, Béatrice Josse, and Virginie Marécal
Atmos. Meas. Tech., 13, 2659–2680, https://doi.org/10.5194/amt-13-2659-2020,https://doi.org/10.5194/amt-13-2659-2020, 2020
Short summary
Data impact studies with the AROME WMED reanalysis of the HyMeX SOP1
Nadia Fourrié, Mathieu Nuret, Pierre Brousseau, and Olivier Caumont
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-153,https://doi.org/10.5194/nhess-2020-153, 2020
Preprint under review for NHESS
Short summary
Homogeneity criteria from AVHRR information within IASI pixels in a numerical weather prediction context
Imane Farouk, Nadia Fourrié, and Vincent Guidard
Atmos. Meas. Tech., 12, 3001–3017, https://doi.org/10.5194/amt-12-3001-2019,https://doi.org/10.5194/amt-12-3001-2019, 2019
Short summary
Impact of airborne cloud radar reflectivity data assimilation on kilometre-scale numerical weather prediction analyses and forecasts of heavy precipitation events
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, Nadia Fourrié, and Pascal Marquet
Nat. Hazards Earth Syst. Sci., 19, 907–926, https://doi.org/10.5194/nhess-19-907-2019,https://doi.org/10.5194/nhess-19-907-2019, 2019
Short summary
Assimilation of wind data from airborne Doppler cloud-profiling radar in a kilometre-scale NWP system
Mary Borderies, Olivier Caumont, Julien Delanoë, Véronique Ducrocq, and Nadia Fourrié
Nat. Hazards Earth Syst. Sci., 19, 821–835, https://doi.org/10.5194/nhess-19-821-2019,https://doi.org/10.5194/nhess-19-821-2019, 2019
Short summary

Related subject area

Atmospheric Sciences
A mass- and energy-conserving framework for using machine learning to speed computations: a photochemistry example
Patrick Obin Sturm and Anthony S. Wexler
Geosci. Model Dev., 13, 4435–4442, https://doi.org/10.5194/gmd-13-4435-2020,https://doi.org/10.5194/gmd-13-4435-2020, 2020
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?
Nicola Bodini, Julie K. Lundquist, and Mike Optis
Geosci. Model Dev., 13, 4271–4285, https://doi.org/10.5194/gmd-13-4271-2020,https://doi.org/10.5194/gmd-13-4271-2020, 2020
Short summary
PAMTRA 1.0: the Passive and Active Microwave radiative TRAnsfer tool for simulating radiometer and radar measurements of the cloudy atmosphere
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020,https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Predicting the morphology of ice particles in deep convection using the super-droplet method: development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2
Shin-ichiro Shima, Yousuke Sato, Akihiro Hashimoto, and Ryohei Misumi
Geosci. Model Dev., 13, 4107–4157, https://doi.org/10.5194/gmd-13-4107-2020,https://doi.org/10.5194/gmd-13-4107-2020, 2020
Short summary

Cited articles

Bénard, P., Vivoda, J., Mašek, J., Smolìkovà, P., Yessad, K., Smith, C., Brožkovà, R., and Geleyn, J.-F.: Dynamical kernel of the Aladin-NH spectral limited area model: Revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 136, 155–169, 2010. a
Bielli, S., Grzeschik, M., Richard, E., Flamant, C., Champollion, C., Kiemle, C., Dorninger, M., and Brousseau, P.: Assimilation of water-vapour airborne lidar observations: impact study on the COPS precipitation forecasts, Q. J. Roy. Meteor. Soc., 138, 1652–1667, https://doi.org/10.1002/qj.1864, 2012. a
Bock, O., Bosser, P., Pacione, R., Nuret, M., Fourrié, N., and Parracho, A.: A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period, Q. J. Roy. Meteor. Soc., 142, 56–71, https://doi.org/10.1002/qj.2701, 2016. a, b, c, d
Bouin, M. N., Redelsperger, J. L., and Lebeaupin Brossier, C.: Processes leading to deep convection and sensitivity to sea-state representation during HyMeX IOP8 heavy precipitation event, Q. J. Roy. Meteor. Soc., 143, 2600–2615, https://doi.org/10.1002/qj.3111, 2017. a
Bresson, E., Ducrocq, V., Nuissier, O., Ricard, D., and de Saint-Aubin, C.: Idealized numerical simulations of quasi-stationary convective systems over the Northwestern Mediterranean complex terrain, Q. J. Roy. Meteor. Soc., 138, 1751–1763, 2012. a
Publications Copernicus
Download
Short summary
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical Weather Prediction AROME-France model that ran in real time during the first special observation period of HyMeX. Two reanalyses were performed after the campaign. This paper depicts the main differences between the real-time version and the benefits brought by both HyMeX reanalyses. The second reanalysis is found to be closer to observations than the previous AROME-WMED analyses.
The AROME-WMED (western Mediterranean) model is a dedicated version of the mesoscale Numerical...
Citation