Articles | Volume 12, issue 1
https://doi.org/10.5194/gmd-12-261-2019
https://doi.org/10.5194/gmd-12-261-2019
Development and technical paper
 | 
16 Jan 2019
Development and technical paper |  | 16 Jan 2019

Independent perturbations for physics parametrization tendencies in a convection-permitting ensemble (pSPPT)

Clemens Wastl, Yong Wang, Aitor Atencia, and Christoph Wittmann

Related authors

Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?
M. Leuchner, S. Gubo, C. Schunk, C. Wastl, M. Kirchner, A. Menzel, and C. Plass-Dülmer
Atmos. Chem. Phys., 15, 1221–1236, https://doi.org/10.5194/acp-15-1221-2015,https://doi.org/10.5194/acp-15-1221-2015, 2015

Related subject area

Climate and Earth system modeling
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Olawale James Ikuyajolu, Luke Van Roekel, Steven R. Brus, Erin E. Thomas, Yi Deng, and Sarat Sreepathi
Geosci. Model Dev., 16, 1445–1458, https://doi.org/10.5194/gmd-16-1445-2023,https://doi.org/10.5194/gmd-16-1445-2023, 2023
Short summary
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler
Geosci. Model Dev., 16, 1427–1444, https://doi.org/10.5194/gmd-16-1427-2023,https://doi.org/10.5194/gmd-16-1427-2023, 2023
Short summary
Analysis of systematic biases in tropospheric hydrostatic delay models and construction of a correction model
Haopeng Fan, Siran Li, Zhongmiao Sun, Guorui Xiao, Xinxing Li, and Xiaogang Liu
Geosci. Model Dev., 16, 1345–1358, https://doi.org/10.5194/gmd-16-1345-2023,https://doi.org/10.5194/gmd-16-1345-2023, 2023
Short summary
A new precipitation emulator (PREMU v1.0) for lower-complexity models
Gang Liu, Shushi Peng, Chris Huntingford, and Yi Xi
Geosci. Model Dev., 16, 1277–1296, https://doi.org/10.5194/gmd-16-1277-2023,https://doi.org/10.5194/gmd-16-1277-2023, 2023
Short summary
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
Suzanne Robinson, Ruza F. Ivanovic, Lauren J. Gregoire, Julia Tindall, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, Kazuyo Tachikawa, and Paul J. Valdes
Geosci. Model Dev., 16, 1231–1264, https://doi.org/10.5194/gmd-16-1231-2023,https://doi.org/10.5194/gmd-16-1231-2023, 2023
Short summary

Cited articles

Bénard, P., Vivoda, J., Mašek, J., Smolıková, P., Yessad, K., Smith, C., Brožková, R., and Geleyn, J. F.: Dynamical kernel of the Aladin-NH spectral limited-area model: revised formulation and sensitivity experiments, Q. J. Roy. Meteor. Soc., 139, 155–169, https://doi.org/10.1002/qj.522, 2010. 
Bengtsson, L., Steinheimer, M., Bechtold, P., and Geleyn, J. F.: A stochastic parametrization for deep convection using cellular automata, Q. J. Roy. Meteor. Soc., 139, 1533–1543, https://doi.org/10.1002/qj.2108, 2013. 
Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, https://doi.org/10.1175/2008JAS2677.1, 2009. 
Berner, J., Fossell, K. R., Ha, S. Y., Hacker, J. P., and Snyder, C.: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations, Mon. Weather Rev., 143, 1295–1320, https://doi.org/10.1175/MWR-D-14-00091.1, 2015. 
Download
Short summary
Ensemble forecasting at the convection-permitting scale (< 3 km) requires new methodologies in representing model uncertainties. In this paper a new stochastic scheme is proposed and tested in the complex terrain of the Alps. In this scheme the tendencies of the physical parametrizations are perturbed separately, which sustains a physically consistent relationship between the processes. This scheme increases the stability of the model and leads to improvements in the probabilistic performance.