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Abstract. A modification of the widely used SPPT (Stochas-
tically Perturbed Parametrisation Tendencies) scheme is pro-
posed and tested in a Convection-permitting – Limited
Area Ensemble Forecasting system (C-LAEF) developed at
ZAMG (Zentralanstalt für Meteorologie und Geodynamik).
The tendencies from four physical parametrization schemes
are perturbed: radiation, shallow convection, turbulence, and
microphysics. Whereas in SPPT the total model tendencies
are perturbed, in the present approach (pSPPT hereinafter)
the partial tendencies of the physics parametrization schemes
are sequentially perturbed. Thus, in pSPPT an interaction be-
tween the uncertainties of the different physics parametriza-
tion schemes is sustained and a more physically consistent
relationship between the processes is kept. Two configura-
tions of pSPPT are evaluated over two separate months (one
in summer and another in winter). Both schemes increase the
stability of the model and lead to statistically significant im-
provements in the probabilistic performance compared to a
reference run without stochastic physics. An evaluation of
selected test cases shows that the positive effect of stochastic
physics is much more pronounced on days with high con-
vective activity. Small discrepancies in the humidity analysis
can be dedicated to the use of a very simple supersaturation
adjustment. This and other adjustments are discussed to pro-
vide some suggestions for future investigations.

1 Introduction

Stochastic physics schemes are used worldwide in many en-
semble prediction systems (EPSs) to represent uncertainties
related to simplifications and approximations in the numeri-
cal model itself. Such uncertainties are defined as “model er-

ror” and arise from different sources such as computational
constraints, incomplete knowledge of physical processes, un-
certain parameters in parametrizations, and from discretiza-
tion methods. These errors range from large spatial scales
(e.g., use of climatological aerosol fields) to very small scales
due to the use of parametrizations of unresolved processes
such as the microphysics or turbulence scheme.

Stochastic parametrization schemes produce an ensemble
of perturbed members where each member sees a different,
but equally likely, stochastic forcing. They have been shown
to significantly improve the reliability of weather forecasts
(Sanchez et al., 2016; Leutbecher et al., 2017). Process-based
stochastic approaches address sources of uncertainty in a
particular parametrization scheme (Plant and Craig, 2008;
Bengtsson et al., 2013; Kober and Craig, 2016), while more
general approaches treat uncertainty from a number of pro-
cesses with one single scheme. The most popular method
of the latter is the Stochastically Perturbed Parametrisa-
tion Tendencies scheme (SPPT) and has been developed at
the ECMWF (European Centre for Medium-Range Weather
Forecasts; Buizza et al., 1999; Palmer et al., 2009). In SPPT
a spectral pattern generator produces random noise with pre-
scribed amplitude and correlations in time and space. This
multiplicative noise is used to perturb model tendencies of
temperature (T ), water vapor content (Q) and wind (U , V ).
SPPT is operational at forecasting centers worldwide (e.g.,
ECMWF, UK Met Office, Japan Meteorological Agency,
etc.). It has also been proven to work for some limited-area
models at the convection-permitting scale, such as AROME
(Applications of Research to Operations at Mesoscale; Bout-
tier et al., 2012) or WRF (Weather Research and Forecast-
ing; Berner et al., 2015). SPPT improves the reliability of
forecasts by reducing biases in the ensemble forecasts and
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yields a greater ensemble spread (Weisheimer et al., 2014;
Leutbecher et al., 2017).

An often-mentioned shortcoming of the SPPT approach
is the lack of physical consistency (Ollinaho et al., 2017;
Leutbecher et al., 2017). SPPT only perturbs the net physics
tendencies inducing an inconsistency with fluxes computed
from unperturbed tendencies (e.g., surface fluxes if surface
tendencies are not perturbed). This creates an energy imbal-
ance where individual ensemble members no longer conserve
energy. To avoid numerical instabilities based on this misbal-
ance, a tapering function has been introduced to SPPT in the
IFS (Integrated Forecasting System) model of ECMWF. It
reduces the perturbations smoothly to zero in the boundary
layer and in the stratosphere. However, this tapering function
destroys the physical consistent representation of model un-
certainty in the vertical because it assumes a reduced model
error in the lowest and topmost parts of the atmosphere.

Furthermore, the original SPPT generates only a single
stochastic pattern, which is applied to the parametrized net
tendencies of model variables. This implies that the different
schemes are perfectly correlated with each other and have
the same error characteristics. This assumption is not always
valid as demonstrated by Shutts and Pallares (2014). They
have shown, for example, that the uncertainty in the cloud
and convection scheme is much higher than in the radiation
scheme. Following this discrepancy, Sanchez et al. (2016)
have developed a method where a multiplicative noise with
different standard deviations for different processes (e.g.,
gravity-wave drag, boundary layer scheme) is applied to the
Unified Model (UM) of the Met Office. Decoupled pertur-
bations among the different schemes increase the ensemble
spread, especially in the tropics. However, a tapering func-
tion is still needed to ensure numerical stability.

Applying multiplicative noise to net physics tendencies, as
in SPPT, implies that the uncertainty representation vanishes
where the total tendency is zero. This is also the case if the
tendencies from different physics parametrizations are large
but act in opposite directions. To overcome this problem,
Christensen et al. (2017) have modified the SPPT scheme
in the IFS model by perturbing the tendencies of the physics
parametrizations with independent stochastic patterns. This
perturbation is done at the end of each time step, so no in-
teraction of the uncertainties between the schemes within a
time step is considered. This limitation is addressed in the
present paper.

In this study, we propose a modified SPPT approach
in which the physical consistency between the different
parametrization schemes is kept. The details of two different
versions of the developed scheme are described in Sect. 2.
Section 3 contains a comparison of these schemes with the
SPPT approach for two recent test periods (July 2016, Jan-
uary 2017). Standard probabilistic scores are used for sur-
face and upper-air variables. In Sect. 4 the effect of stochastic
physics is analyzed on days with strong convection over the
Alpine test area and compared to days with stable conditions.

Section 5 contains a summary of the results together with a
discussion and the final conclusions.

2 Experimental design and methodology

2.1 The C-LAEF system

The C-LAEF (Convection-permitting – Limited Area En-
semble Forecasting) system has been developed at the Aus-
trian national meteorological service ZAMG (Zentralanstalt
für Meteorologie und Geodynamik) and is based on the
convection-permitting AROME model (Seity et al., 2011).
AROME is under active development within the international
NWP (Numerical Weather Prediction) consortia ALADIN
(Aire Limitée Adaptation dynamique Développement Inter-
National; Termonia et al., 2018), HIRLAM (High Resolu-
tion Limited Area Model; Bengtsson et al., 2017) and RC
LACE (Regional Cooperation for Limited Area Modelling
in Central Europe; Wang et al., 2018). AROME has been
operationally used at ZAMG since 2014. The model is run
on a domain centered on Austria and covers the Alpine re-
gion (Fig. 1). It has a grid spacing of 2.5 km, 90 vertical
levels and a time step of 60 s. The nonhydrostatic dynami-
cal kernel of AROME is identical to that developed for the
ALADIN model (Bubnová et al., 1995; Bénard et al., 2010).
The AROME physics package is mainly adopted from the re-
search model Meso-NH (Mascart and Bougeault, 2011) with
the following main components: one moment bulk micro-
physical scheme ICE3 (using three prognostic ice and hy-
drometeor classes; Pinty and Jabouille, 1998); statistical sed-
imentation of falling hydrometeor species after Bouteloup et
al. (2011); a 1-D 1.5-order turbulence scheme (Cuxart et al.,
2000); a mass-flux-type shallow convection scheme with tur-
bulence closure (Pergaud et al., 2009); no deep convection
scheme (because deep convection is assumed to be resolved
by the dynamics); and three-layer surface scheme SURFEX
(Surface Externalisée; Masson et al., 2013) using a tile ap-
proach including sub-schemes for land, vegetation, town,
sea, and lake. The radiation scheme for AROME is taken
from the ECMWF IFS model where short-wave radiation is
computed after Fouquart and Bonnel (1980) and long-wave
using the Rapid Radiative Transfer Model (RRTM; Mlawer
et al., 1997).

The C-LAEF ensemble comprises 16 members using the
first 16 out of a total of 51 members of ECMWF-ENS (en-
semble system of the ECMWF IFS model) for the boundary
conditions. Coupling is done every 3 h using a Davies re-
laxation scheme (Davies, 1976). Weidle et al. (2013) have
shown that 16 members are a good compromise between
ensemble size and computational costs. The ECMWF-ENS
global ensemble system is operated on a cubic octahedral
grid with about 0.2◦ horizontal resolution and 91 vertical lev-
els. The members are created via a combination of ensemble
data assimilation (Isaksen et al., 2010) and singular vectors
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Figure 1. Domain of the C-LAEF system including the INCA do-
main for precipitation verification (red). The coloring shows the al-
titude (m).

(Leutbecher and Lang, 2013) for the initial state and by using
SPPT and the stochastic kinetic energy backscatter (SKEB)
method (Berner et al., 2009) during model integration.

Since the authors are only interested in the effect of
stochastic physics, no extra initial or boundary condition
perturbations are applied on the C-LAEF side. For the
same reason, no data assimilation is used in the experi-
ments and surface uncertainty is not taken into account
either. These assumptions are deemed acceptable because
only the difference between stochastic physics perturbation
schemes are studied. The C-LAEF system is run once per
day (00:00 UTC) with a forecast range of 30 h and an output
frequency of 1 h.

2.2 Stochastic physics schemes

2.2.1 SPPT

The original SPPT stochastic physics scheme was initially
developed by Buizza et al. (1999) for the IFS model of the
ECMWF. Palmer et al. (2009) modified the scheme by in-
troducing a spectral pattern generator. It creates a random
2-D field with a prescribed standard deviation and tempo-
ral and spatial correlation length. In the IFS implementa-
tion, three independent random patterns with different cor-
relation scales are used. They are designed to span the un-
certainty at mesoscale, synoptic scale, and planetary time
and space scales. The resulting random patterns are Gaus-
sian distributed with zero mean, unit variance, and a homo-
geneous and isotropic horizontal autocorrelation. The ampli-
tude of the perturbations is restricted to a range defined by
the standard deviation [−2σ , 2σ ]. The net tendencies, P , of
wind (U and V component), temperature (T ), and water va-
por content (Q) are multiplied at each time step during the
model integration with this perturbation field to generate the
perturbed physics tendencies. The perturbed net tendency of
the physics parametrizations (P ′) at each grid point is repre-

Figure 2. Illustration of how the stochastic perturbations are ap-
plied in the different physics parametrization schemes of SPPT (first
row), pSPPT (second row), and ipSPPT (last row).

sented by:

P ′ = (1+αr)
∑n

i=1
Pi, (1)

where α is a level dependent constant defined by a tapering
function, r is a random number defined by the perturbation
pattern, Pi is the unperturbed tendency of one parametriza-
tion scheme, and n is the number of physics schemes con-
tributing to the total tendency equation. The first row in Fig. 2
illustrates how the physics tendencies of C-LAEF are per-
turbed in SPPT. Due to the multiplicative feature, the scheme
attributes the greatest uncertainties to the areas where the
largest net tendencies P occur. The shape of the tapering
function α can be controlled in the model setup. It reduces
the perturbations to zero in the boundary layer below 900 hPa
(default) and in the stratosphere above 100 hPa (default). α
is set to 1 for all remaining levels, thereby retaining the
vertical structure that results from the physics parametriza-
tions. The tapering function has been introduced to the IFS
model to avoid numerical instabilities – it is not necessary in
some regional models like WRF or COSMO (Leutbecher et
al., 2017).

Bouttier et al. (2012) have successfully implemented
SPPT in the AROME model. Some changes have to be made
to the original SPPT in order to adapt the methodology from
IFS to AROME. The main change is the adaption of the spec-
tral pattern generator from the spherical harmonics applied in
the IFS to the bi-Fourier functions used in AROME. The link
between the variance spectrum and the bi-Fourier representa-
tion follows the formulation by Berre (2000). At the edges of
the model domain, the uncertainties originate only from the
lateral boundary formulation and the physical tendencies are
smoothly relaxed to zero. Due to the relatively short forecast
range of the convection-permitting AROME model (30 h),
only one stochastic pattern is used instead of three in the case
of the IFS model. In the AROME implementation of SPPT,
no perturbations of temperature and humidity are applied if
the resulting humidity value is negative or exceeds the critical
saturation value (supersaturation adjustment; Bouttier et al.,
2012). This is different from the IFS version, where a smooth

www.geosci-model-dev.net/12/261/2019/ Geosci. Model Dev., 12, 261–273, 2019



264 C. Wastl et al.: Independent perturbations for a convection permitting ensemble

humidity reduction is applied in such cases (Palmer et al.,
2009). The default settings of the pattern generator applied
by Bouttier et al. (2012) have to be tuned to the C-LAEF con-
figuration. Using SPPT in the AROME model requires a ta-
pering function to avoid numerical instabilities. Experiments
with tapering off in the boundary layer in SPPT resulted in
several model crashes during the test period because of too
strong wind over the Alps. However, this has not been fur-
ther investigated. The main characteristic of this scheme, de-
scribed as “SPPT” hereinafter, is the perturbation of net ten-
dencies without considering the contribution of each individ-
ual physics tendencies (Fig. 2). In other words, this approach
assumes that no uncertainty is added when the net tendency
is zero, even though the single physics schemes might have
large but compensating contributions.

2.2.2 Physical parametrization-based SPPT (pSPPT)

The restrictions and assumptions made in the original SPPT
approach have led to the idea of setting up a modified ver-
sion of SPPT. The main goal is to maintain the interactions
between the individual physics schemes, and thus, to keep
the model stable. The different physics schemes in AROME
are called in the following order: radiation, shallow convec-
tion, turbulence, and microphysics. Each scheme provides a
partial tendency of the main model quantities T , U , V , and
Q. The condensed water species are not directly perturbed,
they are adjusted at each time step by the fast microphysics
step (Seity et al., 2011). In the original SPPT version the par-
tial tendencies of the different physics parametrizations are
summed up at the end of the time step and this net tendency
is finally perturbed by the noise of the pattern generator as in
Eq. (1). As a consequence, the uncertainties resulting from
one scheme are not passed to the following scheme.

In the present study, it is proposed to perturb the partial
tendencies of the physics schemes separately and to con-
sider the resulting perturbed fields in the subsequent physics
scheme. We call this approach physical parametrization-
based SPPT (pSPPT hereinafter). Equation (2) shows the
formulation of the perturbed partial tendency of each
parametrization scheme in this new pSPPT scheme; an il-
lustration of this is given in Fig. 2. Each random pattern (ri)
is generated separately by the pattern generator using a dif-
ferent seed.

P ′i = (1+αri) Pi for i = 1,n (2)

The uncertainties are passed through the different schemes
and as a consequence the issue of only perturbing nonzero net
tendencies is avoided. For example, if the turbulence scheme
provides a strong positive temperature tendency and the mi-
crophysics scheme a comparable negative temperature ten-
dency, no effect of stochastic physics perturbations is present
in the original SPPT. However, pSPPT will either intensify
or weaken the strong positive tendency of the turbulence
scheme, depending on the stochastic pattern. The resulting

tendency is then processed in the microphysics scheme and
afterwards again adapted by the perturbation process. This
approach has a positive effect on the stability of the model,
as shown by a reduction of the number of model crashes in
a sensitivity study during the 2011 test period. The increased
numeric stability in pSPPT allows for the tapering function
for microphysics, radiation, and shallow convection schemes
to be switched off, being only maintained for the turbulence
scheme. In the turbulence scheme, the stochastic perturba-
tions in the lower atmosphere produce too much instability
and therefore the model crashes after some time steps. A po-
tential drawback of the pSPPT approach is a possible du-
plication in attributing errors across schemes, which can in-
troduce inherent correlations between the perturbations ap-
plied to one physics scheme and the output of a later scheme
(Christensen et al., 2017).

2.2.3 Independent physical parametrization-based
SPPT (ipSPPT)

In pSPPT as well as in SPPT, the tendencies of all consid-
ered variables (T , U , V , and Q) are perturbed with the same
stochastic pattern, which assumes that the different variables
in the parametrization schemes have similar error charac-
teristics. However, this assumption is vague and might not
always be satisfied as Boisserie et al. (2013) have shown.
This leads us to a new approach where the tendencies result-
ing from the physical parametrization schemes (temperature,
wind components, and water vapor content) are perturbed by
individual stochastic patterns. It can be seen as an adaptation
of the pSPPT approach presented before and is called ipSPPT
hereinafter. Equation (3) highlights the independence of this
ipSPPT methodology, by formulating the perturbation of T ,
U , V , and Q separately. An illustration of this is given in the
last row of Fig. 2.

T ′i =
(
1+αri,1

)
Ti; U

′

i =
(
1+αri,2

)
Ui; V

′

i

= . . . for i = 1,n (3)

As a consequence, the random field applied to, for example,
the temperature tendency (T ) is different from the one used
for the wind components (U , V ) or the water vapor content
(Q). Tapering is treated in ipSPPT as in the pSPPT approach
(active only for the turbulence scheme). The first SPPT ver-
sion in the IFS model (Buizza et al., 1999) has also used such
separate patterns for the different parametrized tendencies.
However, it has been removed in the revised SPPT scheme
(Palmer et al., 2009) because some physical relationships
within a parametrization scheme could be violated in this
way (see Sect. 5).

2.3 Experimental setup and verification methods

A 2-week period (16–30 July 2011) is used to optimize the
settings of the spectral pattern generator and the different pa-
rameters of the stochastic physics schemes in the C-LAEF

Geosci. Model Dev., 12, 261–273, 2019 www.geosci-model-dev.net/12/261/2019/



C. Wastl et al.: Independent perturbations for a convection permitting ensemble 265

system. The goal of this optimization is to generate a re-
alistic spread without creating a model bias. A set of four
experiments has been chosen for a long-period verification:
one experiment without any stochastic physics perturbations
(REF), one containing the original SPPT approach (SPPT –
Sect. 2.2.1), a version using physical parametrization-based
SPPT (pSPPT – Sect. 2.2.2), and a version of pSPPT with
independent patterns for the prognostic variables (ipSPPT –
Sect. 2.2.3). The experimentation is conducted over a sum-
mer month (July 2016) and winter month (January 2017)
with one run per day (00:00 UTC) and 30 h forecast range.
The model domain is shown in Fig. 1 and corresponds to the
operational deterministic AROME domain used at ZAMG.

The upper-air weather variables are verified using
ECMWF analyses at the 500 and 850 hPa levels, while sur-
face variables are verified using SYNOP station data. Fore-
cast values are interpolated to the observation location for
smooth fields such as 2 m temperature, 10 m wind speed, or
surface pressure. In the case of precipitation, the forecasts
are matched to the nearest grid point. A height correction is
applied to the 2 m temperature to account for discrepancies
between model surface and station height. The verification is
performed over the whole C-LAEF domain in Fig. 1 which
contains more than 1200 observation sites. Beside classical
scores such as ensemble spread, ensemble bias or ensemble
root-mean-square error (RMSE), the skill of the forecasts is
also evaluated by a set of probabilistic scores like the con-
tinuous ranked probability score (CRPS; Wilks, 2011) or the
Brier score (BS; Hamill and Colucci, 1997). The statistical
significance of the score differences between the three exper-
iments and the reference run is defined by using a bootstrap-
ping confidence test. Therefore a block of 3 days is sampled
out of the 31-day verification period (both summer and win-
ter) and the time averaged score difference to the reference
run is computed. An empirical distribution of all three exper-
iments is constructed by repeating this procedure for 5000
times. The score difference is deemed significant if its sign is
not contradicted by more than 10 % of the sample (for more
details see Wilks, 2011).

3 Results

3.1 Summer period: July 2016

3.1.1 Upper-air verification

The large-scale synoptic pattern in the first half of July 2016
was characterized by a very deep trough over the British Is-
lands directing an extensive southwesterly flow over the tar-
get area of central Europe. This arrangement resulted in a
strong advection of warm and moist air masses towards the
Alps leading to strong convective activity. Numerous thun-
derstorms causing local flash floods and even tornadoes were
observed during this time. In the second part of July 2016 a

very weak pressure gradient was established over central Eu-
rope causing some isolated convection with stationary thun-
derstorms and locally high precipitation amounts.

Figure 3a–d shows the performance of the three experi-
ments (SPPT, pSPPT, ipSPPT) as a difference relative to the
reference run without any stochastic physics for temperature
(Fig. 3a, b) and wind speed (Fig. 3c, d) at 500 hPa (Fig. 3a,
c) and 850 hPa (Fig. 3b, d), respectively. The use of stochas-
tic physics should result in an increase in ensemble spread
together with an unmodified, or sometimes reduced model
error (Leutbecher et al., 2017). Hence, positive differences
in spread and negative differences in RMSE are desirable.

Significant differences are represented by filled circles for
ensemble spread and by crosses for RMSE in Fig. 3. The ip-
SPPT experiment (black) shows the highest gain in spread
for both temperature and wind speed at both levels. The
original SPPT (red) and the pSPPT approach (blue) also ex-
hibit an increase in spread. Focusing on the RMSE (dashed
lines), Fig. 3 reveals a small increase in RMSE for temper-
ature at 500 hPa in all three experiments, especially from
forecast hour 12 onwards. For both pSPPT and ipSPPT, this
temperature increase is even statistically significant. Interest-
ingly, this feature is not present at 850 hPa, where the use of
stochastic physics leads to a general decrease in RMSE. A
slight temperature increase above 800 hPa has already been
observed by Bouttier et al. (2012) in the French AROME-
EPS experiment, but no explanation was provided. This ef-
fect can partly be explained by the very simple supersatura-
tion adjustment, which is used in our experimentation, but
this needs to be further investigated over a longer test pe-
riod. Perturbations are not applied to temperature and water
vapor content when the saturation level is exceeded. Hence,
a general trend towards a systematic drying of the atmo-
sphere is implied, because more negative perturbations are
applied in total. This drying effect was already highlighted
by several SPPT studies (Berner et al., 2009; Bouttier et al.,
2012). To overcome this shortcoming, Davini et al. (2017)
have developed a moisture conservation fix, which was also
adapted to the global IFS model by Leutbecher et al. (2017).
An improved supersaturation adjustment has also been de-
veloped for the AROME model by Szűcs (2016), but it has
not yet been implemented in the present experimentation.
Szűcs (2016) evaluated this drying effect for the AROME-
EPS model during the convective season in 2015. After 24 h
lead time the use of a simple supersaturation adjustment re-
sulted in a negative bias for relative humidity of about 1 %
at 700 hPa and about 2 % at 850 hPa and at the surface. In
terms of temperature, the simple supersaturation is trans-
lated into a slight temperature increase due to the omission
of negative temperature perturbations when the supersatura-
tion level is reached. This temperature effect is not present
at lower levels, because the reduced humidity at the surface
is compensated by stronger evaporation during the day and
rapidly decreasing temperatures during the night (Leutbecher
et al., 2017).
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Figure 3. Ensemble spread (solid lines) and RMSE (dashed lines) as a function of lead time for temperature at 500 hPa (a) and 850 hPa (b,
e) and wind speed at 500 hPa (c) and 850 hPa (d, f) in July 2016. Panels (a) to (d) are shown as the differences between an ensemble without
any stochastic physics (REF), and circles (crosses) denote significant differences for the ensemble spread (RMSE). Panels (e) and (f) show
absolute numbers for all four experiments at 850 hPa.

The behavior of the C-LAEF system is indicated by Fig. 3e
and f where the absolute spread and RMSE for temperature
and wind speed at 850 hPa is shown. The RMSE is generally
high, even at initialization time, because these simulations
are pure downscaling of the IFS model without any data as-
similation. The spread increases with lead time, while the
RMSE is higher during the day when radiation and turbu-
lent fluxes are larger and convection occurs. A spread smaller
than the RMSE is an indicator of an underdispersive ensem-
ble. The spread and RMSE lines are closer in the ipSPPT
experiment, showing the positive effect of this method on the
ensemble performance.

This behavior is also reflected in the probabilistic CRPS
(not shown). CRPS measures the skill of the ensemble mean
forecast as well as the ability of the perturbations to capture
the deviations around it (Bowler et al., 2008). A low value of
CRPS indicates a more skillful forecast. For temperature at
850 hPa and wind speed at both 850 and 500 hPa, the appli-
cation of the stochastic physics methods leads to a significant
decrease in CRPS, compared to the reference run. Only for
temperature at 500 hPa the CRPS difference is slightly posi-
tive for all three experiments due to the positive temperature
bias. CRPS shows a diurnal cycle similar to RMSE in Fig. 3.

3.1.2 Surface verification

The same verification is done for the 2 m temperature, 10 m
wind speed, mean sea level pressure (MSLP), and precip-
itation surface variables. Spread and RMSE plots are not
shown, but the CRPS is shown in Fig. 4a–d. For temperature
and wind speed all three stochastic physics experiments have
smaller CRPS values representing a more skillful forecast.
This behavior can be explained by an increase in the ensem-
ble spread, while the ensemble average error is not notice-
ably influenced by the stochastic physics perturbations (not
shown). The increase in spread is smallest for the SPPT ex-
periment, which can be attributed to the tapering function
in the boundary layer, which is used for all parametriza-
tion schemes in this experiment. MSLP in the original SPPT
and pSPPT does not show a noticeable impact, but in ip-
SPPT there is a significant improvement. The ipSPPT results
in an improvement in the precipitation verification (reduced
CRPS) as well, which is especially significant in the after-
noon when convection is abundant during the summer sea-
son (Fig. 4). The significant reduction of CRPS for precipita-
tion is mainly caused by a large increase in ensemble spread
(not shown).

To investigate the effect of the simple supersaturation
treatment in the boundary layer, 2 m temperature and rela-
tive humidity biases relative to the REF experiment are given
in Fig. 4e and f. It reveals a general trend towards lower tem-
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Figure 4. Continuous ranked probability score (CRPS) as a function of lead time for 2 m temperature (a), 10 m wind speed (b), mean sea
level pressure (c), and precipitation (d) surface variables in July 2016. Panels (e) and (f) show the bias (BIAS) of 2 m temperature and relative
humidity for the same period. All numbers are shown as a difference between C-LAEF without any stochastic physics (REF). Circles denote
significant differences in CRPS and BIAS, respectively.

peratures in all experiments with stochastic physics and the
strongest effect for the ipSPPT experiment in the afternoon
and evening hours. A significant drying of the boundary layer
is obvious in all three experiments with stochastic physics
and can be attributed to the simple supersaturation adjust-
ment.

Generally, the differences in the scores analyzed in this
section are quite small but significance is reached and they
are comparable to other studies of stochastic physics on
the convection-permitting scale (e.g., Bouttier et al., 2012;
Bowler et al., 2008).

3.2 Winter period: January 2017

3.2.1 Upper-air verification

January 2017 was the coldest January in the last 30 years in
most parts of Austria. The weather situation during the first
2 weeks was characterized by a widespread high-pressure
system over the eastern Atlantic Ocean blocking the wester-
lies and enabling the advection of cold polar air masses from
the Arctic Sea towards central Europe. Embedded fronts
caused strong snow falls resulting in an region-wide snow
cover over central Europe. This situation fueled the local pro-
duction of cold air near the surface during the long winter
nights. In the second part of the month, a high-pressure sys-
tem over Scandinavia caused easterly winds over the Alps

advecting extremely cold, continental air masses from Rus-
sia into the target domain.

Compared to the summer period verification, the score dif-
ferences in upper-air variables of January 2017 in Fig. 5 are
much smaller. For temperature and wind speed at both lev-
els (500 and 850 hPa) the use of stochastic physics results
in an increase in ensemble spread. However, statistical sig-
nificance over the whole forecasting range is only reached
for temperature and wind speed at 850 hPa in the ipSPPT
approach. RMSE is not influenced significantly, except for
the wind speed at 850 hPa in the case of ipSPPT. However,
a small trend towards higher temperatures and lower humid-
ity in the experiments with stochastic physics also persists
in winter (not shown). The CRPS in upper air is slightly de-
creased for all variables considered in January 2017, but be-
ing statistically significant only in the case of ipSPPT (not
shown). It seems that the different error representations of
the model variables T , U , V , andQ have a positive effect on
the scores at these levels in winter.

3.2.2 Surface verification

The RMSE of the surface variables in C-LAEF is very large
for January 2017 (Fig. 6e, f). The bias is strongly posi-
tive, especially for 2 m temperature, indicating significantly
higher temperatures in the model than observed. This can
be partly explained by the fact that data assimilation is not
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Figure 5. Ensemble spread (solid lines) and RMSE (dashed lines) as a function of lead time for temperature at 500 hPa (a) and 850 hPa (b)
and wind speed at 500 hPa (c) and 850 hPa (d) in January 2017. Scores are shown as the differences between an ensemble without any
stochastic physics (REF), and circles (crosses) denote significant differences for the ensemble spread (RMSE).

used. However, other operational models at ZAMG also per-
formed poorly during this period, with the pronounced tem-
perature inversions in Alpine valleys posing big problems for
the models. C-LAEF simulated a breakup of the temperature
inversion in the afternoon, but in reality the cold air was very
persistent.

The ensemble spread is much smaller than the model er-
ror showing a highly underdispersive ensemble. This fact can
be explained by the absence of initial conditions and surface
perturbations in our experimentation. Focusing on the im-
provements compared to the reference ensemble, Fig. 6a–d
shows an increase in ensemble spread for the ipSPPT and es-
pecially pSPPT experiment, while the original SPPT method
does not have a strong effect. This can be attributed to the
stronger tapering in SPPT. The pSPPT also produces a sig-
nificant increase in the RMSE for temperature around noon
(+12 h). Finally, the effect of the simple supersaturation ad-
justment, which influences the scores in the summer period,
is not visible at the surface in January 2017. This is because
January 2017 was a rather dry month, with a lot of sunny days
where saturation was rarely reached in the lower atmosphere.

The 10 m wind speed exhibits an increase in spread for all
three experiments, while the ensemble average error is barely
modified. In the ipSPPT experiment, the RMSE of the MSLP
is significantly decreased, which is also reflected in a reduc-
tion of CRPS (not shown). The other two experiments instead
reveal a RMSE increase compared to REF. For precipitation,
the ensemble spread is significantly increased in the ipSPPT

experiment and to a lesser extent in the pSPPT scheme. The
RMSE of precipitation is decreased for all three experiments
between 12 and 24 h lead time compared to REF.

4 Impact on convection

Forecasting convection in summer still remains one of the
biggest challenges for the current high-resolution NWP sys-
tems, especially in complex terrain like the Alps. Section 3
showed that pSPPT and especially ipSPPT can significantly
improve the ensemble spread of precipitation forecasts in
summer. To further investigate this behavior, several test
cases with high convective activity are selected out of the
July 2016 period and compared to days with stable con-
ditions. The selection of cases is based on the Convective
Available Potential Energy (CAPE) and the observed precip-
itation gained from the operational analysis system INCA
(Integrated Nowcasting through Comprehensive Analysis;
Haiden et al., 2011; Wang et al., 2017). All days with CAPE
> 1000 J kg−1 in the afternoon (15:00 UTC) averaged over
the whole INCA domain (Fig. 1) and some observed thun-
derstorms are grouped into the convective class, days with
CAPE < 500 J kg−1 remain in the nonconvective class. Fol-
lowing this classification, 13 days of July 2016 can be as-
signed to the convective class and 10 days to the nonconvec-
tive class.
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Figure 6. As in Fig. 3, but for 2 m temperature (a), 10 m wind speed (b), mean sea level pressure (c), and precipitation (d) surface variables
in January 2017. The last row shows absolute numbers for temperature (e) and precipitation (f).

Figure 7 shows the ensemble spread and RMSE for pre-
cipitation of all experiments relative to an ensemble without
stochastic physics (REF). For this precipitation verification
the observations are taken from the INCA analysis system
which combines rain gauge and radar data on a 1 km grid.
Comparing the two columns of Fig. 7 reveals a much stronger
impact of stochastic physics on the ensemble spread at days
with significant convection. Especially for the ipSPPT ap-
proach the spread increase (compared to REF) in the after-
noon of convective days is about 5 times higher than for days
with stable conditions. Also for SPPT and pSPPT the spread
increase is mainly restricted to days with convection. The ef-
fect on RMSE of precipitation is generally smaller (see also
Sect. 3.1.2). A slight reduction of RMSE in the afternoon can
be seen for SPPT and pSPPT with the larger values on con-
vective days. The effect on RMSE for the ipSPPT experiment
is generally small in both cases. This case study shows that
introducing perturbations into a model is much more effec-
tive when convection and vertical motion in the atmosphere
is high. This is only shown for precipitation in Fig. 7, but also
for temperature or wind speed the effect of stochastic physics
is much higher at convective days (not shown). This explains
why the scores presented in Sect. 3 are generally smaller in
winter when the conditions in the considered area are gener-
ally much more stable than in summer.

5 Discussion and conclusions

In this study we have proposed two physical parametrization-
based SPPT versions (pSPPT, ipSPPT) and have investi-
gated their performance in a convection-permitting ensem-
ble for one summer and one winter month. In pSPPT the
partial tendencies of turbulence, radiation, shallow convec-
tion, and microphysics are perturbed individually and inter-
act with the subsequent parametrization schemes. In other
words, each parametrization sees the updated state includ-
ing the perturbed tendencies of the previous parametrizations
(Fig. 2). In ipSPPT an independent perturbation is addition-
ally applied to the parametrization tendencies of T ,U , V and
Q. These two schemes have been compared to the original
SPPT method (Buizza et al., 1999; Bouttier et al., 2012) and
a control ensemble without any stochastic perturbations. As
expected, the use of stochastic physics increases the ensem-
ble spread, especially in periods with high convective activity
(summer period). The gain of spread is clear in temperature
and wind speed at all model levels, with the highest increase
near the surface. This can be mainly attributed to the reduced
tapering of perturbations in the boundary layer in pSPPT and
ipSPPT. In the case of precipitation, SPPT has little effect
on the ensemble spread, whereas the new ipSPPT scheme re-
veals a statistically significant increase in ensemble spread
compared to the reference experiment. The model error has
been analyzed by calculating the RMSE of each experiment
as difference to the reference run. For most variables stochas-
tic physics lead to a slight decrease in model error throughout
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Figure 7. Ensemble spread (a, b) and RMSE (c, d) of precipitation as a function of lead time. The panels (a) and (c) refer to days with high
convective activity, the panels (b) and (d) to days with stable conditions. Scores are shown as the differences between an ensemble without
any stochastic physics (REF).

all lead times. The strongest effect is observed with the ip-
SPPT approach. In the case of temperature, the effect is much
more complex: a positive temperature bias is observed in the
upper levels (e.g., 500 hPa), while a negative difference of
bias is obtained near the surface. The simple supersaturation
adjustment used in our experimentation has a strong impact
on the temperature and especially humidity scores presented
here. This adjustment tends to favor positive temperature and
negative water content perturbations due to omitting pertur-
bations when supersaturation is reached. This leads to a sig-
nificant drying of the atmosphere, which results in a cooling
effect in the surface boundary layer due to higher evapora-
tion rates during the day and stronger long-wave emission
at night. These problems should be reduced by using an im-
proved supersaturation, adjustment which has already been
developed for the AROME model (Szűcs, 2016). However,
this has not yet been used in the present study, but will be
tested in the near future.

CRPS confirmed the better performance of the ensemble
when using stochastic physics perturbations. These improve-
ments are generally much smaller in winter than in summer,
which can be explained by the more stable stratification of
the atmosphere. A small temperature increase is sufficient to
trigger convection and to influence wind, humidity, and pre-
cipitation fields in summer. This conclusion is supported by a
more in-depth analysis of a set of convective events presented
in this paper.

The main reason for trying two new approaches of stochas-
tic physics perturbations is because of the restrictions and
assumptions made in the original SPPT. The first assump-
tion is the use of a tapering function that has been imple-
mented in SPPT to consider the imbalance between perturbed
atmospheric tendencies and the unperturbed surface fluxes
and thus to avoid numerical instabilities. On the other hand,
smoothly relaxing the perturbations to 0 in the lowermost
levels of the atmosphere implies a different error represen-
tation in the vertical, which can be considered physically
unsatisfactory. Sensitivity studies during the test period of
July 2011 with tapering switched off in the SPPT approach
showed that about 10 % of model crashes were due to ex-
ceptionally high wind speeds over the Alps. Perturbing the
physical schemes separately and considering these perturbed
fields in the subsequent parametrization (pSPPT) results in a
positive effect on the stability of the model. In this case the ta-
pering function has been switched off for microphysics, radi-
ation, and shallow convection without any problems. For the
turbulence scheme, the perturbations in the lower atmosphere
produce too much instability, especially in the Alps, and
therefore the tapering function has to be turned on. Switching
off the tapering function separately for the schemes is only
possible in the new independent approaches with partial ten-
dencies (pSPPT, ipSPPT). In the case of the original SPPT,
the physical schemes cannot be influenced independently.

The main difference between the pSPPT approach pre-
sented here and the independent SPPT (iSPPT) method pro-
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posed by Christensen et al. (2017) is the time when the per-
turbations are applied. In iSPPT the stochastic perturbations
are applied at the end of the time step; whereas in the ap-
proaches presented in this paper, perturbations are applied
directly after each parametrization. Hence, an interaction of
the uncertainty of one physical scheme in the subsequent one
is considered in pSPPT and ipSPPT, which seems to increase
the stability of the model, but this needs to be confirmed us-
ing longer experiments. Of course, sequentially perturbing
the partial tendencies implies a possible duplication of model
error representation (Christensen et al., 2017). However, the
results in Sect. 3 have shown that a significant increase in
spread goes along with only a small effect on the model error
(RMSE) when applying pSPPT (ipSPPT). A direct compari-
son of the pSPPT and iSPPT approaches within the C-LAEF
framework would be very interesting at this point, but it is be-
yond the scope of this paper and is planned in a future study.
The very flexible structure of the pSPPT approach also al-
lows for combination with other uncertainty representations
such as the parameter perturbations scheme in Ollinaho et
al. (2017).

The ipSPPT approach is a modification of pSPPT where
the tendencies of the variables T , U , V , and Q receive sepa-
rate perturbations. As shown in Sect. 3, this approach obtains
the best probabilistic scores overall, even though the method
is considered unsatisfactory from a physical point of view.
A major concern with the ipSPPT approach is that the bal-
ance between the quantities resulting from one parametriza-
tion scheme can be disturbed (Palmer et al., 2009). For ex-
ample, the microphysics scheme can provide an increase in
temperature at a certain point due to condensation processes,
which are also decreasing the water vapor content. This equi-
librium is destroyed if temperature and water vapor content
tendencies are perturbed with opposite signs. On the other
hand, it seems wrong to assume that T and Q have exactly
the same error characteristics, as it is supposed in SPPT and
pSPPT. Furthermore, in SPPT and pSPPT the wind direction
is never altered stochastically, since the tendencies of the U
and V components are always using the same stochastic pat-
tern. Testing over a longer period will be necessary to iden-
tify if conservation rules are violated in ipSPPT and if it is
really applicable in an operational framework.

Last but not least, perturbations in SPPT are only active in
areas where the net tendency is not 0, even though the indi-
vidual physical parametrization schemes might have strong
opposite contributions. This shortcoming is avoided by per-
turbing the partial tendencies of the physics parametrizations
in both pSPPT and ipSPPT.

In our experiments no ensemble data assimilation or errors
in the initial conditions are taken into account. Consequently,
only the impact of different stochastic physics approaches
compared to a reference ensemble has been considered. The
focus on relative scores between the different experiments
also somewhat justifies the fact that we did not consider ob-
servation error simulations in our verification. Of course, in-

cluding observation error can have a strong impact on scores
like ensemble spread (Bouttier et al., 2012), but we suppose
that it would act in the same direction for all experiments and
therefore the relative conclusions stay the same.

The next step in the development of C-LAEF is to intro-
duce the new stochastic perturbation schemes to a full system
with data assimilation and initial perturbations. The verifica-
tion in this operational framework will show the operational
benefit of these new approaches for the C-LAEF system.
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