Articles | Volume 12, issue 3
https://doi.org/10.5194/gmd-12-1209-2019
https://doi.org/10.5194/gmd-12-1209-2019
Development and technical paper
 | 
29 Mar 2019
Development and technical paper |  | 29 Mar 2019

Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10

Christoph A. Keller and Mat J. Evans

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christoph A. Keller on behalf of the Authors (16 Jan 2019)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (29 Jan 2019) by David Topping
RR by Anonymous Referee #1 (14 Feb 2019)
ED: Publish as is (19 Feb 2019) by David Topping
AR by Christoph A. Keller on behalf of the Authors (06 Mar 2019)  Manuscript 
Download
Short summary
Computer simulations of atmospheric chemistry are a central tool to study the impact of air pollutants on the environment. These models are highly complex and require a lot of computing resources. In this study we show that machine learning can be used to predict air pollution with an accuracy that is comparable to the traditional, computationally expensive method. Such a machine-learning-based model has the potential to be orders of magnitude faster.