Articles | Volume 11, issue 6
Geosci. Model Dev., 11, 2393–2418, 2018
https://doi.org/10.5194/gmd-11-2393-2018
Geosci. Model Dev., 11, 2393–2418, 2018
https://doi.org/10.5194/gmd-11-2393-2018

Model description paper 20 Jun 2018

Model description paper | 20 Jun 2018

Numerical experiments on vapor diffusion in polar snow and firn and its impact on isotopes using the multi-layer energy balance model Crocus in SURFEX v8.0

Alexandra Touzeau et al.

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Alexandra Touzeau on behalf of the Authors (06 Mar 2018)  Author's response    Manuscript
ED: Publish as is (16 Mar 2018) by Dan Goldberg
AR by Alexandra Touzeau on behalf of the Authors (09 Apr 2018)  Author's response    Manuscript
Download
Short summary
We introduced a new module of water vapor diffusion into the snowpack model Crocus. Vapor transport locally modifies the density of snow layers, possibly influencing compaction. It also affects the original isotopic signature of snow layers. We also introduced water isotopes (𝛿18O) in the model. Over 10 years, the modeled attenuation of isotopic variations due to vapor diffusion is 7–18 % lower than the observations. Thus, other processes are required to explain the total attenuation.