Articles | Volume 10, issue 2
https://doi.org/10.5194/gmd-10-673-2017
https://doi.org/10.5194/gmd-10-673-2017
Development and technical paper
 | 
13 Feb 2017
Development and technical paper |  | 13 Feb 2017

Source apportionment of atmospheric water over East Asia – a source tracer study in CAM5.1

Chen Pan, Bin Zhu, Jinhui Gao, and Hanqing Kang

Related authors

Research on the unusual spring 2020 Arctic stratospheric ozone depletion above Ny-Ålesund, Norway
Qidi Li, Yuhan Luo, Yuanyuan Qian, Chen Pan, Ke Dou, Xuewei Hou, Fuqi Si, and Wenqing Liu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-859,https://doi.org/10.5194/acp-2022-859, 2023
Revised manuscript not accepted
Short summary
Potential impacts of cold frontal passage on air quality over the Yangtze River Delta, China
Hanqing Kang, Bin Zhu, Jinhui Gao, Yao He, Honglei Wang, Jifeng Su, Chen Pan, Tong Zhu, and Bu Yu
Atmos. Chem. Phys., 19, 3673–3685, https://doi.org/10.5194/acp-19-3673-2019,https://doi.org/10.5194/acp-19-3673-2019, 2019
Short summary
Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China
Jinhui Gao, Bin Zhu, Hui Xiao, Hanqing Kang, Chen Pan, Dongdong Wang, and Honglei Wang
Atmos. Chem. Phys., 18, 7081–7094, https://doi.org/10.5194/acp-18-7081-2018,https://doi.org/10.5194/acp-18-7081-2018, 2018
Short summary

Related subject area

Atmospheric sciences
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Tuning the ICON-A 2.6.4 climate model with machine-learning-based emulators and history matching
Pauline Bonnet, Lorenzo Pastori, Mierk Schwabe, Marco Giorgetta, Fernando Iglesias-Suarez, and Veronika Eyring
Geosci. Model Dev., 18, 3681–3706, https://doi.org/10.5194/gmd-18-3681-2025,https://doi.org/10.5194/gmd-18-3681-2025, 2025
Short summary
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary

Cited articles

Baker, A. J., Sodemann, H., Baldini, J. U. L., Breitenbach, S. F. M., Johnson, K. R., van Hunen, J., and Zhang, P.: Seasonality of westerly moisture transport in the East Asian summer monsoon and its implications for interpreting precipitation δ18O, J. Geophys. Res.-Atmos., 120, 5850–5862, https://doi.org/10.1002/2014JD022919, 2015.
Bosilovich, M. G.: On the vertical distribution of local and remote sources of water for precipitation, Meteorol. Atmos. Phys., 80, 31–41, https://doi.org/10.1007/s007030200012, 2002.
Bosilovich, M. G. and Schubert, S. D.: Water vapor tracers as diagnostics of the regional hydrologic cycle, J. Hydrometeorol., 3, 149–165, https://doi.org/10.1175/1525-7541(2002)003<0149:WVTADO>2.0.CO;2, 2002.
Bosilovich, M. G., Sud, Y. C., Schubert, S. D., and Walker, G. K.: Numerical simulation of the large-scale North American monsoon water sources, J. Geophys. Res.-Atmos., 108, 8614, https://doi.org/10.1029/2002JD003095, 2003.
Bosilovich, M. G., Robertson, F. R., and Chen, J.: Global energy and water budgets in MERRA, J. Climate, 24, 5721–5739, https://doi.org/10.1175/2011JCLI4175.1, 2011.
Download
Short summary
This paper describes the implementation of the atmospheric water tracer (AWT) method in the NCAR Community Atmosphere Model version 5.1 (CAM5.1). Compared to other source apportionment methods, the AWT method was developed based on detailed physical parameterisations, and can therefore trace the behaviour of atmospheric water substances directly and exactly. Using this method, we quantitatively identify the dominant sources of precipitation and water vapour over East Asia.
Share