Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4743-2017
https://doi.org/10.5194/gmd-10-4743-2017
Development and technical paper
 | 
22 Dec 2017
Development and technical paper |  | 22 Dec 2017

A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods

Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Y. Tang on behalf of the Authors (03 Oct 2017)  Manuscript 
ED: Publish as is (17 Nov 2017) by Samuel Remy
AR by Y. Tang on behalf of the Authors (17 Nov 2017)
Download
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.