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Abstract 14 

This study applies the Gridpoint Statistical Interpolation (GSI) 3D-Var assimilation tool 15 
originally developed by the National Centers for Environmental Prediction (NCEP), to improve 16 
surface PM2.5 predictions over the contiguous United States (CONUS) by assimilating aerosol 17 
optical depth (AOD) and surface PM2.5 in version 5.1 of the Community Multi-scale Air Quality 18 
(CMAQ) modeling system. An optimal interpolation (OI) method implemented earlier (Tang et 19 
al., 2015) for the CMAQ modeling system is also tested for the same period (July, 2011) over the 20 
same contiguous United States (CONUS). Both GSI and OI methods assimilate surface PM2.5 21 
observations at 00, 06, 12, and 18UTC, and MODIS AOD at 18 UTC. The assimilations of 22 
observations using both GSI and OI generally help reduce the prediction biases, and improve 23 
correlation between model predictions and observations. In the GSI experiments, assimilation of 24 
surface PM2.5 leads to stronger increments in surface PM2.5 compared to its MODIS AOD 25 
assimilation at the 550nm wavelength. In contrast, we find a stronger OI impact of the MODIS 26 
AOD on surface aerosols at 18 UTC compared to the surface PM2.5 OI method.  GSI produces 27 
smoother result and yields overall better correlation coefficient and root mean squared error 28 
(RMSE). It should be noted that the 3D-var and OI methods used here have several big 29 
difference besides the data assimilation schemes. For instance, the OI uses the relatively big 30 
model uncertainties, which helps yield smaller mean biases, but sometimes causes the RMSE 31 
increase. We also examine and discuss the sensitivity of the assimilation experiments results to 32 
the AOD forward operators.  33 
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1. Introduction 1 

The existing U.S. National Air Quality Forecasting Capability (NAQFC) run by the National 2 
Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental 3 
Prediction (NCEP)  provides daily 48-hour  ozone and PM2.5 (particle matters with diameter < 4 
2.5 µm) forecasts using the Community Multi-scale Air Quality (CMAQ) modeling system with 5 
12km horizontal grid resolution. Many contributions toward improving the NAQFC can be 6 
found in literatures, including updated emission, meteorology, chemical mechanism and lateral 7 
boundary conditions (Pan et al., 2014; Tang et al., 2008; Lee et al., 2016). However, biases still 8 
contaminate current predictions.  9 

Chemical data assimilation techniques have been developed to improve initial conditions of 10 
chemical transport models (CTM) and yield better prediction ((Elbern et al., 1997, 2000, 2007; 11 
Elbern and Schmidt, 1999, 2001; Bocquet et al., 2015) by blending the information from a model 12 
estimate (refer to as prior or background) and from observations in certain methods. One method 13 
is direct blending, e.g. using observed chemical mass concentrations to correct the modeled mass 14 
concentrations, which is relatively straightforward, as they are directly comparable. As most 15 
monitoring data are located near surface, that method was usually applied to near-surface field. 16 
Another method is indirect guessing, e.g. comparing satellite retrieved AOD with modeled AOD 17 
to estimate the biases of modeled column mass concentrations and make the corresponding 18 
adjustment. Tang et al. (2015) used both surface PM2.5 and MODIS AOD to adjust the initial 19 
condition of a CTM with the optimal interpolation (OI) method, and successfully reduced the 20 
model biases. The OI correction was applied to 7×7 or 11×11 grid cells horizontally, and from 21 
the ground to the boundary layer top vertically for surface PM2.5 assimilation. Adhikary et al. 22 
(2008) and Chai et al. (2017) also used the similar local OI correction to reduce model biases. A 23 
more complex method is using the Gridpoint Statistical Interpolation (GSI) (Wu et al., 2002; 24 
Purser et al., 2003a, b), a 3D-VAR method, developed by NOAA/NCEP.  It has been applied to 25 
assimilate the Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosols in 26 
Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) with its 3D-27 
var method (Pagowski et al., 2014; Liu et al., 2011). In next sections, we describe the method 28 
that extends the GSI to assimilate CMAQ aerosols comparing to the OI correction. A comparison 29 
for their one-month performances will be discussed.  30 

 31 

2. Methodology and Settings 32 

The baseline model setting used in this study is similar to Tang et al. (2015), except that the 33 
CMAQ model changed from version 5.0.2 to version 5.1 for more refined chemical mechanisms 34 
and physical schemes. The meteorology is provided by the WRF-ARW (version 3.4.1) driven by 35 
the NCEP FNL (Final Global Analysis) 1° × 1° analysis field and was reinitialized every 24 36 
hour.  Both the meteorological and air quality models have 12-km horizontal resolution over the 37 
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contiguous United States, with 42 sigma layers vertically, and the domain tops at 50 hPa. The 1 
detailed setting of the CMAQ model can be found in Tang et al. (2015). Chai et al (2017) 2 
described the detail of the OI algorithm for aerosol assimilation, and that study used relatively 3 
old CMAQ (version 4.7.1) with 22 vertical layers.  In order to compare the two methods of 4 
adjusting the initial condition, we assimilate same surface PM2.5 data, the USEPA Air Quality 5 
System (AQS) data, 4 times every day (00Z, 06Z, 12Z and 18Z). The 18Z assimilation uses 6 
additional MODIS AOD data from Terra and Aqua satellites, whose overpassing time over the 7 
CONUS domain range from 14 to 22 UTC, depending on the dates and locations.  In this study, 8 
we only used the MODIS AOD at 550 nm wavelength (Level-2 MODIS AOD from the 9 
Collection 051 with the best quality, quality flag = 3) (Levy et al., 2009). 10 

 11 

2.1 Settings for Data Assimilations 12 

In this study, we are comparing two assimilation methods: the optimal interpolation and GSI’s 13 
3D-Var. The optimal interpolation is carried in the similar way as described in the OI4 case of 14 
Tang et al. (2015) for assimilating surface PM2.5 and aerosol optical depth retrieved from 15 
Aqua/Terra MODIS sensors at 550nm.  16 

)()( 1 bTTba HXYOHBHBHXX −++= −  (1) 17 

where Xa and Xb are the analyzed and background (prior modeled) concentrations or aerosol 18 
optical depth (AOD) data, B and O are the background and observation error covariance 19 
matrices, H is the observational operator and HT is its matrix transpose, and Y is the observation 20 
vector. The relative uncertainty setting is also same as Tang et al. (2015), in which the 21 
background relative uncertainties have horizontal and diurnal variations. Before the OI 22 
assimilation, the AQS surface PM2.5 monitoring data and MODIS AOD data are put into their 23 
corresponding model grids. If there was more than one active surface PM2.5 station in the same 24 
model grid, the observation was taken from their average. The OI adjustment is made on each 25 
11×11 grid cells horizontally throughout the whole domain, and gets the analyzed field Xa. Then 26 
the ratio of Xa/Xb at each grid point is used to scale all aerosol components throughout the 27 
vertical column. The surface PM2.5 OI is applied from surface to the height of the planetary 28 
boundary layer (PBL), and the MODIS AOD is used to adjust above-PBL aerosol after deducting 29 
the adjusted below-PBL AOD. 30 

The GSI’s 3D-var uses a similar approach (Pagowski et al., 2014; Liu et al., 2011) for its cost 31 
function 32 
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Where xa and xb are the analyzed and background (a prior modeled) concentrations or AOD data, 1 
B and O are the background and observation error covariance matrices, H is the observational 2 
operator, Oo is the observations and Jc is the constraint terms. Both GSI’s 3D-Var and OI use 3 
spatially varied background bias and observation to make the adjustment. However, each OI 4 
adjustment used in this study is made in each 11×11 grid horizontally and its effect expands up 5 
to the PBL height for its surface PM2.5 assimilation. The GSI’s cost function reduction is 6 
performed for the whole domain, and its effect of the adjustment can be expanded in much 7 
greater horizontal and vertical scales defined by its horizontal and vertical length scales, 8 
respectively.  9 

In this study, we carry out the similar uncertain setting for the OI as Tang et al. (2015), in which 10 
the background’s relative uncertainties have horizontal and diurnal variations (Figure 2 of Tang 11 
et al., 2015) for PM2.5 assimilation over the PM2.5 monitoring locations, and a fixed relative 12 
uncertainty of 80% are applied to the other areas.. In the OI horizontal adjustment, its B matrix 13 
has cut-off Gaussian-like horizontal correlations for its each 11×11 grid adjustment. For OI’s 14 
AOD assimilation, we use the fixed relative uncertainty of 80% for modeled AOD.  MODIS 15 
AOD’s retrieval quality depends on the land surface properties, and its uncertainty can be range 16 
from 5% over ocean to 20% over land (Remer et al., 2005). Although the surface in-situ 17 
measured AQS PM2.5 has much less measurement error than the satellite-retrieved AOD in most 18 
scenarios, the single surface station’s representative error over the 12km grid cell could be higher 19 
than the MODIS AOD which is in 10×10km resolution. In this study, we simply choose the 20 
relatively uncertainty of 10% for both MODIS AOD and surface PM2.5 observations. In this 21 
study, the PM2.5 observations are located at 674 surface sites over CONUS, and all of them are 22 
used in data assimilations.  23 

GSI’s setting is similar to Pagowski et al. (2014), in which the background error and length 24 
scales have vertical variance. Figure 1 shows that the vertical profiles of background errors and 25 
length scales for PM2.5 (for PM2.5 assimilation) and accumulation-mode sulfate (ASO4J, for 26 
AOD assimilation), which can be calculated using GSI’s NMC (National Meteorological Center) 27 
method (Parrish and Derber, 1992) with a tool called GEN_BE (Descombes et al., 2015). ASO4J 28 
is one of CMAQ aerosol species used in AOD data assimilation. Other aerosol species have 29 
similar model or background errors. The uncertainties of modeled aerosols are high in the lower 30 
layers and decrease with altitudes. The model’s horizontal length scale indicates the extent of the 31 
assimilation’s horizontal expansion. In Figure 1, the horizontal length scale for modeled PM2.5 32 
increases significantly around the altitude of 12km, where the tropopause is usually located. The 33 
model’s vertical length scale indicates the extent of the assimilation’s vertical expansion, which 34 
is related to the strength of vertical advection, diffusion, and convection. Below PBL, the vertical 35 
length scale is usually stronger than that in the upper layers. GSI was mainly used for 36 
assimilating meteorological variables, such as temperature and humidity, which usually have 37 
strong latitude variation. So, the vertical profiles of background errors and length scales used in 38 
GSI for meteorological variables were usually varied depending on latitudes. In this study, our 39 
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assimilation target are aerosols, whose concentrations and the corresponding variance could be 1 
caused by many factors, including emission, transport and chemical transformation, and their 2 
latitude dependences are not significant. So, we simply use one set of the vertical profiles for 3 
each aerosol species throughout the whole domain, which has no temporal variation, either.   We 4 
use the same constant observation error of 0.1 in GSI for surface PM2.5 and MODIS AOD. In 5 
both settings of GSI and OI, their background errors are far greater than the observation errors in 6 
lower altitudes, which push the adjusted values toward the observed surface PM2.5. For AOD 7 
assimilations, GSI’s main increment is also in low altitudes due to its background error profile 8 
(Figure 1), while OI’s AOD assimilation applies one adjusting ratio to whole column for each 9 
grid cell.  10 

2.2 Calculations of Aerosol Optical Depths 11 

To assimilate AOD in the CMAQ model, we need convert CMAQ aerosol chemical 12 
compositions. CMAQ includes two methods for calculating AOD: the Mie method and the 13 
reconstruction method (Binkowski and Roselle, 2003). The Mie method calculates the aerosol 14 
optical extinction coefficient (AOE) from modeled aerosol physical characteristics, including the 15 
index of refraction, volume concentration and aerosol size distributions. It does not require 16 
aerosol chemical composition information and can handle the aerosols’ internal mixture, in 17 
which each aerosol particle is composed of a solid core and coating layers of various 18 
compositions due to the aerosol uptake. In theory, the Mie method should yield accurate AOE if 19 
all the model’s aerosol physical properties are correct. However, that condition was hard to reach 20 
in many circumstances. Also, aerosol mass concentrations are often available in both models and 21 
observations, and a convenient method is needed to directly convert aerosol mass concentrations 22 
to AOE. So, CMAQ provides another empirical approach, the reconstruction method (RM), 23 
which uses the mass concentrations of aerosol chemical compositions to calculate the total AOE 24 
with a look-up table. The RM assumes that all aerosols are externally mixed. It calculates each 25 
composition’s AOE, and sums them up to get the total AOE (Binkowski and Roselle, 2003) for 26 
the wavelength at 550nm.  27 

𝐴𝐴𝐴𝐴𝐴𝐴 � 1
𝑘𝑘𝑘𝑘
� = 0.003 ∗ 𝑓𝑓(𝑅𝑅𝑅𝑅) ∗ {(𝑁𝑁𝑅𝑅4)2𝑆𝑆𝐴𝐴4 + 𝑁𝑁𝑅𝑅4𝑁𝑁𝐴𝐴3} + 0.004 ∗ {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚} + 0.01 ∗28 

{𝑙𝑙𝑜𝑜𝑜𝑜ℎ𝑡𝑡 𝑜𝑜𝑎𝑎𝑚𝑚𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑜𝑜} + 0.001 ∗ {𝑓𝑓𝑜𝑜𝑜𝑜𝑓𝑓 𝑚𝑚𝑜𝑜𝑜𝑜𝑙𝑙} + 0.0006 ∗ {𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑓𝑓 𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚} + 0.00137 ∗29 
𝑓𝑓𝑠𝑠(𝑅𝑅𝑅𝑅) ∗ {𝑚𝑚𝑓𝑓𝑜𝑜 𝑚𝑚𝑜𝑜𝑙𝑙𝑡𝑡}    (3) 30 

In CMAQ’s RM, only the AOE from ammonium, sulfate, nitrate, and sea salt have the 31 
dependence on relative humidity (RH).  f(RH) and fs(RH) are two RH-dependent look-up tables 32 
of aerosol hydroscopic growth for sulfate/nitrate/ammonium and sea salt, respectively (the 33 
original RM (Binkowski and Roselle, 2003) in earlier versions (<5.1) of CMAQ does not include 34 
sea salt’s RH dependence for AOE calculation). All other aerosols are converted from their mass 35 
concentrations to the corresponding AOEs with simple fixed constants. The conversion method 36 
does not need aerosol size distribution, but just the mass concentrations of aerosol compositions 37 
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and ambient RH. Due to its simplicity and convenience, the RM method is widely used not only 1 
for CMAQ aerosols, but also for converting observed aerosol mass concentrations to AOE 2 
(Malm et al., 1994; Roy et al., 2007). Tang et al. (2015) also use the RM calculated AOD for OI 3 
assimilation, which is carried out here for this OI assimilation. In contrast, the Mie method based 4 
on aerosol physical characteristics is relatively hard to be used in data assimilations, as the data 5 
assimilations target the mass concentrations of aerosol compositions, not the aerosol physical 6 
characteristics directly. Although we can use adjusted aerosol mass concentrations to calculate 7 
the corresponding change on aerosol physical characteristics with CMAQ routines, and then link 8 
it to AOD adjustment, the additional conversion makes these calculations difficult. 9 

In theory, we should use the same forward method, such as RM, to calculate AOD used in GSI. 10 
However, the CMAQ’s current RM is relatively simple, only for single wavelength, 500nm, 11 
without considering aerosol distribution. The current RM can not be directly used to calculate 12 
multi-wavelength AOD, though this study only uses the 550nm AOD. The existing GSI has its 13 
own tool, the Community Radiative Transfer Model (CRTM, Han et al., 2006; Liu and Weng, 14 
2006), to handle its AOD calculation. CRTM provides GSI not only the forward AOD, but also 15 
the calculations of tangent-linear, adjoint and K-matrix for multiple wavelengths. As the GSI is 16 
tightly coupled with CRTM for its AOD related operations, we need to go through the CRTM for 17 
utilizing GSI’s existing AOD assimilation capability. However, the current version of CRTM 18 
does not support CMAQ’s aerosol species, and only handle GOCART (Goddard Chemistry 19 
Aerosol Radiation and Transport, Chin et al., 2000, 2002) aerosol species. GOCART’s aerosol 20 
species are similar to the classification of aerosol used in CMAQ RM method, including sulfate, 21 
dust, sea salt, black carbon, and organic carbon, which also assumes that the aerosols are 22 
externally mixed. It is possible for us to represent CMAQ aerosols in GOCART aerosol 23 
categories for calculating their optical properties. Table 1 shows how the CMAQ 5.1 Aero6 24 
species (Sonntag et al., 2014) are mapped to CRTM’s GOCART aerosol.  CMAQ aerosols have 25 
3 size modes: Aitken (i-mode), accumulation (j-mode) and coarse mode (k-mode) representing 26 
the super-fine nucleation particles, aged coagulated particles, and coarse particles, respectively 27 
(Binkowski and Roselle, 2003). Each size mode has its own lognormal size distribution (Whitby 28 
and McMurry, 1997).We applied the CMAQ averaged aerosol size for each mode (aitken, 29 
accumulation or coarse) to the CRTM AOD calculation.  Unlike the CMAQ RM method in 30 
which only AOEs from sulfate, nitrate, ammonium and sea salt have RH dependence, all the 31 
calculations for GOCART AOEs except hydrophobic BC/OC depend on ambient RH, 32 
wavelength and aerosol sizes, which differs from RM’s one-size-fit-all method. It should be 33 
noted that the GSI AOD assimilation uses the 54 CMAQ species, not the GOCART species. The 34 
concentrations of the 54 species, aerosol sizes and ambient RH are feed into CRTM, which 35 
generates the AOD of each CMAQ species and the corresponding adjoint Jacobian, needed for 36 
the AOD assimilation (Figure 2). In GSI’s AOD assimilation, the control variables are the 54 37 
CMAQ aerosol species, unlike the GSI’s PM2.5 assimilation in which only PM2.5 is the control 38 
variable and all CMAQ aerosol species are adjusted based on the PM2.5 incremental ratio.  In this 39 
study, GSI does not assimilate MODIS AOD and surface PM2.5 simultaneously due to the 40 
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complexity of handling two observations types. For 18Z GSI assimilation, the assimilation was 1 
actually made in two steps: the first is the GSI AOD assimilation, and surface PM2.5 2 
assimilation was made upon the AOD assimilation adjustment. After the assimilations, we get 3 
the adjusted CMAQ aerosol concentrations, which are used as the initial condition of the next 4 
cycle of the CMAQ forward run. 5 

Figure 3 shows one example of the AOD calculations from the 3 methods mentioned above 6 
compared to Terra/Aqua MODIS AOD data. The MODIS AODs in Figure 3 are the daily data, 7 
and the overpass times of Terra and Aqua satellites on 07/01/2011 ranges from 15 to 22 UTC 8 
over the CONUS. Both OI and GSI use the AOD assimilation window of +/- 2 hours. During this 9 
event, some wildfire occurred in Southern Canada-Wisconsin, North and South Carolinas, which 10 
caused the relatively high AOD values. These high AODs are also confirmed by the MODIS 11 
retrievals (Figure 3d). Figure 3 shows that the different AOD calculations from the same CMAQ 12 
aerosol mass loadings yield the similar spatial distribution pattern with noticeable quantitative 13 
differences, and in general we see RM AOD > Mie AOD > CRTM AOD. In most regions, 14 
especially over Western USA, e.g. Nevada, MODIS AOD is higher than the three CMAQ AODs. 15 
The Mie-method AOD and CRTM AOD are generally lower than MODIS AOD. Only RM 16 
method shows some sporadic overestimated AOD over Southern Canada-Wisconsin and 17 
Carolinas. These differences will lead to the corresponding differences in data assimilation 18 
adjustments.  Roy et al. (2007) compared the CMAQ AOEs with surface AOE observations from 19 
the nephelometer instrument over 25 Interagency Monitoring of Protected Visual Environment 20 
(IMPROVE) sites (most of them were located in National Parks), and found that the CMAQ RM 21 
method yielded too high surface AOE, but agreed well with AERONET (Aerosol Robotic 22 
Network) and MODIS AOD in summer 2001. In Roy et al. (2007), CMAQ used static lateral 23 
boundary condition, which may miss some elevated aerosol loadings (Lu et al., 2016). It is very 24 
likely that their CMAQ overpredicted near-surface AOD loading and underpredicted elevated 25 
AOD loading, but got total column AOD in right magnitude. In another word, the converting 26 
factors of RM method used in equation (3) may be too high if their CMAQ predicted correct 27 
aerosol mass concentration over those National Park sites.  28 

2.3 PM2.5 Calculations 29 

Besides the MODIS AOD, The data assimilations of OI and GSI also use surface PM2.5 30 
observations to make adjustments. The OI method for surface PM2.5 assimilation was described 31 
in Tang et al. (2015). Pagowski et al. (2014) described the GSI method for surface PM2.5 32 
assimilation used in WRF-CHEM in which aerosol size bins are fixed. CMAQ’s PM2.5 33 
calculation is slightly different as it is not defined by fixed size bins, but three size modes: 34 
Aitken, accumulations and coarse modes (i, j, k modes) (Appel et al., 2010). 35 

𝑃𝑃𝑃𝑃2.5 = 𝑃𝑃𝑃𝑃25𝐴𝐴𝐴𝐴 ∗ (𝑆𝑆𝐴𝐴4𝑖𝑖 + 𝑁𝑁𝐴𝐴3𝑖𝑖 + 𝑁𝑁𝑅𝑅4𝑖𝑖 + 𝑁𝑁𝑜𝑜𝑖𝑖 + 𝐶𝐶𝑙𝑙𝑖𝑖 + 𝐴𝐴𝐶𝐶𝑖𝑖 + 𝑃𝑃𝐴𝐴𝐶𝐶𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑖𝑖) +36 
𝑃𝑃𝑃𝑃25𝐴𝐴𝐶𝐶 ∗ �𝑆𝑆𝐴𝐴4𝑗𝑗 + 𝑁𝑁𝐴𝐴3𝑗𝑗 + 𝑁𝑁𝑅𝑅4𝑗𝑗 + 𝑁𝑁𝑜𝑜𝑗𝑗 + 𝐶𝐶𝑙𝑙𝑗𝑗 + 𝐴𝐴𝐶𝐶𝑗𝑗 + 𝐴𝐴𝐸𝐸𝑗𝑗 + 𝑃𝑃𝐴𝐴𝐶𝐶𝑗𝑗 + 𝑆𝑆𝐴𝐴𝐴𝐴𝑗𝑗 + 𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑗𝑗� +37 

𝑃𝑃𝑃𝑃25𝐶𝐶𝐴𝐴 ∗ (𝑆𝑆𝐴𝐴4𝑘𝑘 + 𝑁𝑁𝐴𝐴3𝑘𝑘 + 𝑁𝑁𝑅𝑅4𝑘𝑘 + 𝑁𝑁𝑜𝑜𝑘𝑘 + 𝐶𝐶𝑙𝑙𝑘𝑘 + 𝑆𝑆𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘 + 𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴𝑅𝑅𝑘𝑘)     (4)   38 
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where PM25AT, PM25AC and PM25CO are the mass scaling factors for the three modes, 1 
indicating the mass ratios of each mode falling in PM2.5 size range (Jiang et al., 2006), and their 2 
value ranges should be between 0 and 1, varied with time and location. POC is the primary 3 
organic carbon, and SOA represents the 23 secondary organic aerosols (table 1). CMAQ 5.1 also 4 
includes 8 additional mineral elements: Fe, Al, Si, Ti, Ca, Mg, K and Mg (Table 1) in its 5 
accumulation mode, represented by ELj. The species OTHER represent all other aerosols (Table 6 
1) in each mode. The equation 4 describes the forward operator for calculating PM2.5, which is 7 
feed into GSI as background PM2.5 concentration. After the GSI estimates the total PM2.5 8 
increment, the increment is proportionally allocated to each aerosol size mode with the 9 
corresponding mass scaling factor, and then to each aerosol species. Thus, the final adjustment 10 
that OI and GSI give back to CMAQ is the mass concentration increment for each CMAQ 11 
aerosol species.  12 

3. Results and Discussions  13 

As the GSI and OI methods assimilate both surface PM2.5 and AOD, the impacts of these 14 
adjustments can be compared. Figure 4 shows the CMAQ raw predictions (referred to as base-15 
case run) of surface PM2.5 compared to the measurements.  In most regions west of 100ºW, this a 16 
priori case underestimated the surface PM2.5. Surface measurement also shows some sporadic 17 
high PM2.5 values in Eastern USA, missed by the base-case run. The goal of the data 18 
assimilations is to reduce these errors.  19 

3.1 The Impact of Data Assimilation on Aerosol Mass Concentration 20 

Since both PM2.5 and aerosol AOD represent the concentrations of 54 aerosol species (Table 1), 21 
to understand the data assimilation method performances, we choose the accumulation-mode or 22 
J-mode sulfate (ASO4J), to illustrate the impact of data assimilation. Other aerosol species have 23 
similar adjustments in the GSI and OI assimilations. We set up three experiments to showing the 24 
assimilation effect, one with just PM2.5, one with AOD and one with both for the 18Z cycle. 25 
Figure 5 (a, b) shows that the GSI assimilation with surface PM2.5 yields more significant 26 
changes than the corresponding OI assimilation. The OI assimilation of PM2.5 leads to more 27 
localized increments compared to GSI since OI increment is spread over 11×11 grid cells (i.e., an 28 
area of 17424 km2), while GSI increment spread depends on the horizontal length scales. Their 29 
adjustments also differ over certain areas. For instance, the base case underestimates PM2.5 in 30 
Chicago, but it overestimates PM2.5 in southeastern Wisconsin (Figure 4). The OI adjustment has 31 
a local flavor: increase ASO4J in Chicago, and decrease it over southeastern Wisconsin (Figure 32 
5b). The GSI’s result differs significantly due to its length scales and cost-function reduction 33 
over the whole domain. It yields overall PM2.5 reduction in Chicago surrounding areas with 34 
smaller correction. Similar differences are also noted in other areas and other periods. 35 

The impacts of AOD assimilations via GSI and OI also differ significantly (Figure 5c, 5d). The 36 
model relative uncertainty used in the OI assimilation is relatively high, which caused the strong 37 
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adjustment in ASO4J (Figure 5d) due to OI’s AOD assimilation over Nevada-Southern 1 
California, Illinois and Michigan. The OI assimilation of AOD increases ASO4J over most of the 2 
model domain except in certain areas, such as Northeastern Minnesota-Southern Canada, and the 3 
eastern part of the border of North Carolina and South Carolina where the OI assimilation leads 4 
to a decrease in ASO4J (Figure 5d). The GSI assimilation of AOD tends to be more moderate 5 
and smoother. Its increment is almost one order of magnitude smaller than the variation of OI-6 
AOD assimilation (Figure 5c). Figure 5c shows that the majority of increments of GSI-AOD 7 
assimilation occur in Eastern California-Nevada, Missouri-Illinois (St. Louis surrounding areas) 8 
and Wisconsin. 9 

Figures 5e and 5f show the combined effect of assimilation of both surface PM2.5 and AOD on 10 
surface ASO4J from GSI and OI methods, respectively. For GSI, the impact of assimilating 11 
surface PM2.5 is greater than that of assimilating MODIS AOD. The OI assimilations show the 12 
opposite effect with AOD assimilation having a bigger impact than its surface PM2.5 13 
assimilation.  14 

It should be noted that the difference between GSI and OI increments is not only on their 15 
horizontal distribution, but also on their vertical distribution. GSI has a height-dependent 16 
background error profile (Figure 1) while OI applies the uniform adjustment ratio to either whole 17 
column for AOD assimilation or below PBL for surface PM2.5 assimilation. Figure 6 shows the 18 
model predicted PBL height at this time. In most portions of CONUS domain except the Rocky 19 
mountain region, the PBL height is less than 3 km. It means that the impact of OI-PM2.5 20 
assimilation should be below 3 km for most regions. Considering the locations of available 21 
surface PM2.5 monitoring stations and the regional distribution of background PM2.5, the vertical 22 
extension of the increments of OI-PM2.5 should be more limited. Figure 7 shows the ASO4J 23 
increments similar to Figure 5 but for the model’s 18th layer, or roughly 2 km above ground. 24 
Figure 7b shows that the OI-PM2.5 adjustment at the 2 km layer only appears in sporadic 25 
locations, such as Raleigh/Durham (central North Carolina), Atlanta and Denver downwind 26 
areas. Compared to Figure 5b and 6, we can find that in the most CONUS regions, the OI-27 
PM2.5’s ASO4J increments do not show up in the 2km layer because either their PBLs are lower 28 
than 2km, or there is no strong surface adjustment due to the locations of monitoring stations. On 29 
the contrary, GSI-PM2.5 assimilation shows the horizontal distribution of ASO4J increment at 30 
2km similar to its surface increment (Figure 7a, 5a), but with a much smaller magnitude than the 31 
increment of OI-PM2.5 assimilation at the 2 km layer. The GSI-AOD assimilation also yields a 32 
similar ASO4J adjustment pattern with smaller increments than OI-AOD (Figure 7c, 5c). The 33 
strongest adjustment at the 2 km layer comes from the OI-AOD assimilation, which uses the 34 
same adjustment ratio for the whole vertical column. Its impact on 2 km ASO4J is more than one 35 
order of magnitude stronger than the corresponding GSI assimilation due to its relatively high 36 
uncertainty setting. In term of combined effect at the 2km, for GSI, the AOD assimilation is 37 
almost equally important as the surface PM2.5 assimilation, depending on regions (Figure 7e). 38 
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For OI assimilation, the AOD’s impact is dominated at the 2km layer as the surface PM2.5’s 1 
effect only appear sporadically (Figure 7f).  2 

3.2 The Impact of Data Assimilation on AODs 3 

The above discussion is about the data assimilations’ impacts on one aerosol mass concentration. 4 
It is also still needed to assess the impacts on column AODs, as the AOD is used here to make 5 
assimilations. Fortunately both CRTM and RM are composition-based methods for externally 6 
mixed aerosols, and we can easily calculate the AOD changes due to the changes of aerosol mass 7 
concentrations. Figure 8 shows the CRTM AOD changes due to GSI assimilation (left panel), 8 
and RM AOD changes due to OI assimilation (right panel). Their spatial distribution patterns are 9 
very similar to the corresponding surface ASO4J increments in Figure 5 as most high aerosol 10 
loadings are near surface. However, the AOD increment’s value range of GSI-PM2.5 assimilation 11 
is more than one order of magnitude lower than that of OI-PM2.5. One reason is that the CRTM 12 
method yields 2 or 3 times lower AOD than the RM method with same aerosol loading (Figure 13 
2b, 2c). Another reason, or the major reason, is that GSI-PM2.5 assimilation has much lower 14 
increment on total aerosol mass loading, reflected by the magnitude difference between Figure 15 
6a and 6b, as the GSI assimilation uses a steepen background error profile (Figure 1),  makes its 16 
major adjustment near surface and yields smaller overall adjustment for total column aerosol 17 
mass loading. On the contrary, the OI-PM2.5 assimilation applies the same adjustment ratio to the 18 
aerosol masses below PBL, and the adjustment could be much stronger than that of GSI-PM2.5 19 
assimilation for the elevated layers blow PBL. We can see the similar patterns and differences 20 
due to their AOD assimilations (Figure 8c, 8d). The AOD increments due to GSI-AOD and OI-21 
AOD have the similar horizontal distribution to their corresponding ASO4J mass increments 22 
(Figure 5c,7c and 8c; Figure 5d, 7d, and 8d), but the OI-AOD has much stronger adjustments on 23 
total AOD and elevated aerosol masses. Generally, the GSI-AOD tends to increase AOD or 24 
aerosol column loading in Northern Central USA and over Nevada (Figure 8c). The OI-AOD 25 
assimilation has the similar AOD increment over these two regions, but decrease AOD or aerosol 26 
column loading over Texas, Northern Florida, South Central Canada, and the border of North 27 
Carolina and South Carolina (Figure 8d). It should be noted that the OI-PM2.5 assimilation yields 28 
the AOD enhancements in Southern and Eastern USA, though just sporadically (Figure 8b). So 29 
there is a conflict as the OI-PM2.5 and OI-AOD assimilations pointed to opposite adjusting 30 
directions over some areas, implying that the RM AOD could yield some overpredictions. Under 31 
this situation, the combined OI assimilations will increase below-PBL aerosol masses according 32 
to the adjustment of OI-PM2.5, but reduce the above-PBL aerosol mass to fit the overall AOD 33 
reduction and get compromised results over these two regions (Figure 8f). This conflict-34 
resolving process will change the vertical distribution of CMAQ aerosols. Figure 8 shows that 35 
the overall AOD increments are mainly due to PM2.5 assimilation in GSI, and AOD assimilation 36 
in OI. The OI adjustments on AOD are much stronger than that of GSI, which is mainly due to 37 
their adjustments at the elevated layers. 38 

3.3 The Overall Assimilation Impacts over Longer Periods 39 
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We continue the CMAQ runs after the 18UTC assimilations. After 1 hour, or at 19UTC, we 1 
compared their surface PM2.5 prediction with the corresponding measurement again to see their 2 
impacts (Figure 9). At this time, the effects of data assimilations have been transported to 3 
downstream areas. Without the data assimilation, the base case (Figure 9a) systematically 4 
underestimated the PM2.5 in western USA, which is consistent with that shown in Figure 4. Both 5 
assimilations correct some of the biases, which is more obvious in areas west of 90ºW.  For 6 
instance, both assimilations correct the PM2.5 underprediction in Iowa. In some locations, OI gets 7 
better result, such as in Southern Nevada-Southern Utah, and Kanas where only one surface 8 
observation is available. In other locations, the GSI achieves better results, such as Southeastern 9 
Wisconsin.Sometimes the data assimilations could overcorrect and yield worse results than the 10 
base run, such as the OI’s overestimation over the Lake Michigan and GSI’s overprediction over 11 
central Illinois (Figure 9b, 9c). The overcorrection issue is more evident in the OI run as the 12 
adjustment of the OI assimilation is stronger than that of GSI, due to OI’s stronger setting for 13 
model uncertainties. This strong setting is actually helpful sometimes, for instance, the OI 14 
assimilation is strong enough to correct the underpredicting bias over southeastern North 15 
Carolina, where GSI’s moderate correction only helps reduce that bias. The most evident side 16 
effect of the OI’s overcorrection is the increase of root mean squared error (RMSE).  17 

In this study, we employ 4-cycle per day data assimilations, the MODIS AOD assimilation is 18 
only applied at the cycle of 18 UTC for both the GSI and OI. We continue these runs for the 19 
whole July 2011, and make one-month continuous verification based on the 674 CONUS surface 20 
sites. In order to avoid from using the same data in data assimilation and verification, we skip 21 
verifying the initial condition of each 6-hour run. For 18UTC data assimilation and forecast, the 22 
verification starts from 19UTC to 00UTC, and 00UTC cycle’s verification is made from 01UTC 23 
to 06UTC. The verification for rest cycles follows the similar time shift. Figure 10 shows the 24 
time-series plots of these CMAQ predictions for surface PM2.5, their correlation coefficient (R) 25 
and RMSE. Before July 14 or Julian day 195, the CMAQ base prediction systemically 26 
underpredicted the PM2.5. After that date, the base model tends to underpredict during daytime, 27 
but slightly overpredict during nighttime, except for the last 3 days of July 2011 while the overall 28 
undeprediction appeared again. Both GSI and OI help reduce these undeprediction biases. The 29 
OI’s correction is stronger due to its stronger setting. It became more evident during the PM2.5 30 
peak period caused by the firework emission at night of July 4th (U.S. Independence Day), which 31 
is about early morning of July 5th (Julian day 186) in UTC time (Figure 10a). The OI 32 
assimilation caught the firework caused PM2.5 spike though its peak time was later than that of 33 
the observation. The GSI assimilation showed the moderate correction which was not strong 34 
enough to full match with observation. The OI run shows some overprediction during the 35 
nighttime, especially in later July. Figure 10b clearly shows the effect of 4 assimilations per day, 36 
represented by the 4-time-per-day enhancement of GSI and OI’s correlation coefficients. For the 37 
most of this month, we can generally see GSI>OI>CMAQ base for R. The difference of R 38 
between GSI and OI is much smaller than that between the assimilations runs and the CMAQ 39 
base case. GSI’s R is consistent better than the CMAQ base while the OI’s R is not always 40 
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better, e.g. during the Julian days of 191 and 207, though we can still find several periods when 1 
OI yielded the highest R. In term of RMSE, the GSI’s RMSE is always lower than that of the 2 
base run, and the OI run shows some RMSE spikes (Figure 10c) due to its localized correction 3 
and strong settings.  4 

Table 2 shows the corresponding statistics for the whole domain and the certain regions. The 5 
CMAQ base case systematically undepredicted surface PM2.5 with mean bias of -2.25 µg/m3 6 
over CONUS during this period. With data assimilations, the OI and GSI runs get mean biases of 7 
0.77 and -0.73 µg/m3, respectively. Besides that effect, their correlation coefficient, R, is also 8 
improved: the base case’s R is 0.3, and Rs of OI and GSI runs are 0.38 and 0.44 over CONUS, 9 
respectively. Their indexes of Agreement (IOA) have the corresponding improvements, too. 10 
Among the regions, the data assimilation yield most significantly improvements over the Pacific 11 
Coast and Southeastern USA, where the CMAQ base case has relatively poor correlation 12 
coefficients. In all of these regions, the GSI yields overall best correlation coefficient and RMSE, 13 
while the OI run has the smallest mean biases except for South Central region where the GSI’s 14 
mean bias is the lowest. OI’s localized correction and strong settings help get better mean biases, 15 
but cause the overcorrection issue and increase RMSE. Over Northeastern USA where relatively 16 
dense surface observations are available, the OI’s RMSE increase is relatively small. Although 17 
both assimilations generally improve the PM2.5 prediction, their performance can be highly 18 
varied depending on regions. For instance, over Rocky Mountain States where both surface 19 
observation and MODIS AOD are limitedly available with complex terrains, the GSI and OI 20 
assimilations slightly improve the R and IOA, though they evidently improve the mean bias of 21 
surface PM2.5.  22 

All these runs have daytime underprediction bias issue from 12 to 00UTC. The 4-cycle-per-day 23 
data assimilations help reduce that bias, but the bias trend is still there. It implies that the data 24 
assimilation for CMAQ’s initial condition has certain limitation, and may not be able to solve the 25 
prediction bias by it alone. In addition to uncertainties in initial conditions, forecasts errors also 26 
depend on errors in model’s meteorology, chemistry and emissions, and we need other 27 
adjustments to correct these biases.  28 

  29 

4. Conclusions  30 

In this study, we expanded the GSI assimilation to CMAQ 5.1’s Aero6 aerosol species. The 4-31 
cycle-per-day aerosol data assimilation for surface PM2.5 and AOD were carried out with GSI 32 
and OI (Tang et al., 2015) methods over the CONUS. The results were compared against surface 33 
PM2.5 observation, and shows that both assimilations generally improved the aerosol predictions. 34 
The increments resulting from our OI assimilation are spread in 11×11 horizontal grid cells while 35 
the increment spread in GSI (a 3D-Var assimilation technique) is controlled by its background 36 
error variances, horizontal and vertical length scales. GSI’s cost function reduction is performed 37 
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for the whole domain. The differences in formulation of these two methods led to their different 1 
patterns of adjusting the initial conditions, and GSI yielded smoother and horizontally broader 2 
adjustment, but much weaker vertical increment. The local OI method uses a simple one-ratio-3 
fit-all method for its vertical adjustment up to PBL height for PM2.5 assimilation, or whole 4 
column for AOD assimilation. This OI method can use strong setting to achieve better mean 5 
bias, but has side effect of RMSE increase due to its localized correction. Overall, GSI’s 6 
adjustment yield better results even with its moderate setting of data assimilation parameters, 7 
shown by its better statistics. One important reason is that GSI’s whole-domain cost function 8 
reduction, which helps constrain its RMSE, and longer horizontal length scale, especially for 9 
PM2.5 assimilation (Figure 1), which helps expand its adjusting effect to relatively broad areas. 10 
Both assimilations highly depend on the available observations. Compared to GSI’s massive 11 
code, the OI code is much smaller and portable, which may be good choice of some light-duty 12 
usages. 13 

AOD assimilations have more issues than the surface PM2.5 assimilation, which is not only about 14 
the methods for converting aerosol mass concentrations to AOD that relies on the model for 15 
ambient RH, aerosol sizes and speciation, but also depends on a prior model for the aerosol 16 
vertical distribution. The CRTM AOD is about 2-3 times lower than RM AOD with the same 17 
aerosol mass loadings (Figure 3). From the existing evidence, the converting factors used in RM 18 
AOD may be too high (Roy et al., 2007), or the RM’s one-size-fit-all method may not resolve 19 
highly-varied aerosol size impact on AOD calculation. There is another issue of aerosol 20 
specification, which is particular important for organic aerosols as CMAQ 5.1 has 23 SOAs plus 21 
primarily emitted OC (POC). All of organic aerosols were assumed to have the same optical 22 
properties in CRTM and RM, which is obviously an approximate assumption. Liu et al. (2016) 23 
shows that SOA’s optical properties could be highly varied depending on the chemical species, 24 
aging time and ambient NOx concentrations.  Both CRTM and RM assume that all aerosols are 25 
externally mixed, which may not best fit the situation in the real world. These uncertainties need 26 
to be addressed in the future verification with observations. In this study, we only adjust the 27 
aerosol mass concentrations, and did not adjust the aerosol composition, size and vertical 28 
distributions which could have big impact on the AOD calculations. The data assimilation for 29 
initial condition also has its limitation, and its adjustment effect could fade away with time if 30 
there is persistent model bias. So, more frequent adjustment is helpful. Unfortunately the MODIS 31 
AOD assimilation used in this study is applied only once per day in the data assimilations due to 32 
the data availability. More satellite AOD data, such as VIIRS (Visible Infrared Imaging 33 
Radiometer Suite) and GOES-R (Geostationary Operational Environmental Satellite-R Series) 34 
ABT (Advanced Baseline Imager) AODs, should make this assimilation more useful. Another 35 
approach is using more complex and costly four-dimensional (4-D) variational data assimilation 36 
(4D-var) to correct the model’s persistent biases, which integrated the data assimilation with the 37 
CTM (Chai et al., 2016). All these issue should be addressed in the future studies. 38 

 39 
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Code Availability 1 

This study includes the forward simulations and data assimilation tools. The meteorological code 2 
of WRF 3.4.1 can be downloaded from 3 
http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. CMAQ 5.1 can be 4 
downloaded from https://www.cmascenter.org/download.cfm. The GSI data assimilation tool can 5 
be downloaded at http://www.dtcenter.org/com-GSI/users.v3.5/downloads/index.php. All other 6 
codes and the modified codes can be provided upon request.7 

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www.cmascenter.org/download.cfm
http://www.dtcenter.org/com-GSI/users.v3.5/downloads/index.php
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Table 1. CMAQ 5.1 aerosol species and their Mapping to GOCART aerosol optical properties in 
CRTM. (CMAQ species with solid underline are Aitken-mode aerosols, and those with dash 
underline are coarse-mode aerosols, and the rest are the accumulation-mode aerosols) 

Aerosol Species in CMAQ 5.1 GOCART aerosols in CRTM 
ASO4I ANO3I ANH4I ACLI ASO4J ANO3J 
ANH4J ASO4K ANO3K ANH4K Sulfate Aerosol 

AECI  AECJ Black Carbon Aerosol 
APOCI APNCOMI APOCJ AOTHRJ 
AXYL1J AXYL2J AXYL3J ATOL1J 
ATOL2J ATOL3J ABNZ1J ABNZ2J ABNZ3J 
AISO1J AISO2J AISO3J ATRP1J ATRP2J 
ASQTJ AALK1J AALK2J AORGCJ 
AOLGBJ AOLGAJ  APAH1J APAH2J 
APAH3J APNCOMJ 

Organic Carbon Aerosol 

AFEJ AALJ ASIJ ACAJ AMGJ AKJ AMNJ 
ACORS ASOIL Dust Aerosol 

ANAJ ACLJ ACLK ASEACAT Sea Salt Aerosol 
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Table 2. Regional statistic of the three simulations (CMAQ_BASE, OI and GSI) for surface 
PM2.5 in July, 2011 

Regions Simulations Mean Bias 
(µg/m3) 

Root Mean 
Square 
Error 

(µg/m3) 

Correlation 
Coefficient, 

R 

Index of 
Agreement 

CONUS 
BASE -2.25 10.57 0.3 0.54 

OI 0.77 11.07 0.38 0.59 
GSI -0.73 9.42 0.44 0.64 

Northeastern 
USA 

BASE -3.36 11.02 0.27 0.54 
OI 0.78 11.17 0.42 0.64 

GSI -1.18 9.70 0.44 0.66 

Pacific Coast 
BASE -2.24 8.74 0.23 0.40 

OI 0.71 9.13 0.40 0.60 
GSI -0.80 7.86 0.44 0.61 

Southeastern 
USA 

BASE -1.86 11.05 0.23 0.50 
OI 0.12 9.88 0.41 0.63 

GSI -0.58 9.30 0.41 0.63 
Rocky 

Mountain 
States 

BASE -3.22 12.14 0.09 0.24 
OI 1.59 13.28 0.13 0.30 

GSI -1.63 11.75 0.16 0.28 

North Central 
BASE -1.55 12.29 0.22 0.49 

OI 0.96 13.83 0.28 0.51 
GSI -0.26 11.12 0.35 0.59 

South Central 
BASE -1.1 9.49 0.09 0.4 

OI 0.38 8.07 0.27 0.52 
GSI -0.1 7.58 0.27 0.54 
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Figure 1. GSI’s background errors and length scales used in this study (ASO4J is the CMAQ’s 

accumulation-mode sulfate aerosol) 
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Figure 2. The schematic diagram of GSI-AOD assimilation 
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Aerosol Optical Depth 

Figure 3, AOD calculations using Mie-method (a), reconstruction method (b), and CRTM 

from the CMAQ’s base case (before assimilations) compared to MODIS AOD  on 

07/01/2011. All the AODs are at 550nm wavelength. 

 

a) b) 

c) d) 
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Figure 4. Predicted surface PM2.5 from CMAQ base run compared to surface 

measurement (close circle) at 18 UTC, 07/01/2011. 
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Figure 5. surface accumulation-mode sulfate (ASO4J) changes after GSI (left) and 

OI (right) assimilations with surface PM2.5 and MODIS AOD at 550nm. 
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d) 
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Figure 6. Model-Predicted PBL height (m) at 18UTC, 07/01/2011
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Figure 7, same as the figure 5 but for the model’s 2km layer. 

a) b) 

c) 

e) 

d) 

f) 
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Figure 8, same as the Figure 5 but for AOD (at 550nm) change. Left plots show the 

CRTM AOD change due to GSI adjustments and right plots are RM AOD change for OI. 

a) 

c) 

e) 

b) 

d) 

f) 
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Figure 9, Predicted surface PM2.5 from the base case (a), OI (b) and GSI (c) runs 

compared to surface observation at 19UTC, 07/01/2011. 
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Figure 10, Time-series comparisons of CMAQ surface PM2.5 (base, OI, and GSI) versus 

the observation over the CONUS domain for their mean value (a), correlation coefficient 

(b) and root mean squared error (RMSE) (c) 

a) 

b) 

c) 
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