Articles | Volume 10, issue 12
https://doi.org/10.5194/gmd-10-4647-2017
https://doi.org/10.5194/gmd-10-4647-2017
Development and technical paper
 | 
21 Dec 2017
Development and technical paper |  | 21 Dec 2017

Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

Tomoo Ogura, Hideo Shiogama, Masahiro Watanabe, Masakazu Yoshimori, Tokuta Yokohata, James D. Annan, Julia C. Hargreaves, Naoto Ushigami, Kazuya Hirota, Yu Someya, Youichi Kamae, Hiroaki Tatebe, and Masahide Kimoto

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by T. Ogura on behalf of the Authors (27 Oct 2017)  Author's response   Manuscript 
ED: Publish as is (09 Nov 2017) by Holger Tost
AR by T. Ogura on behalf of the Authors (10 Nov 2017)
Download
Short summary
Present-day climate simulated by coupled ocean atmosphere models exhibits significant biases in top-of-atmosphere radiation and clouds. This study shows that only limited part of the biases can be removed by parameter tuning in a climate model. The results underline the importance of improving parameterizations in climate models based on cloud process studies. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases.