Articles | Volume 10, issue 10
https://doi.org/10.5194/gmd-10-3661-2017
https://doi.org/10.5194/gmd-10-3661-2017
Development and technical paper
 | 
09 Oct 2017
Development and technical paper |  | 09 Oct 2017

Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

Louis Marelle, Jean-Christophe Raut, Kathy S. Law, Larry K. Berg, Jerome D. Fast, Richard C. Easter, Manish Shrivastava, and Jennie L. Thomas

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Louis Marelle on behalf of the Authors (26 Aug 2017)  Author's response   Manuscript 
ED: Publish as is (31 Aug 2017) by Axel Lauer
AR by Louis Marelle on behalf of the Authors (31 Aug 2017)
Download
Short summary
We develop the WRF-Chem 3.5.1 model to improve simulations of aerosols and ozone in the Arctic. Both species are important air pollutants and climate forcers, but models often struggle to reproduce observations in the Arctic. Our developments concern pollutant emissions, mixing, chemistry, and removal, including processes related to snow and sea ice. The effect of these changes are quantitatively validated against observations, showing significant improvements compared to the original model.