Articles | Volume 10, issue 9
https://doi.org/10.5194/gmd-10-3391-2017
https://doi.org/10.5194/gmd-10-3391-2017
Model description paper
 | 
14 Sep 2017
Model description paper |  | 14 Sep 2017

A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1.1) for spatial prediction of floods

Dieu Tien Bui and Nhat-Duc Hoang

Viewed

Total article views: 4,516 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,204 1,178 134 4,516 245 131 156
  • HTML: 3,204
  • PDF: 1,178
  • XML: 134
  • Total: 4,516
  • Supplement: 245
  • BibTeX: 131
  • EndNote: 156
Views and downloads (calculated since 17 Jan 2017)
Cumulative views and downloads (calculated since 17 Jan 2017)

Viewed (geographical distribution)

Total article views: 4,516 (including HTML, PDF, and XML) Thereof 4,192 with geography defined and 324 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Discussed (final revised paper)

Latest update: 21 Jan 2025
Download
Short summary
A probabilistic model, named BayGmmKda, is proposed for flood susceptibility assessment in central Vietnam. The model is a combination of Gaussian mixture model and radial-basis-function Fisher discriminant analysis. A geographic information system (GIS) database has been established for model construction. The proposed model can accurately establish a flood susceptibility map for the study region. Local authorities can use this map for land-use planning.