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Abstract. In this study, a probabilistic model, named as
BayGmmKda, is proposed for flood susceptibility assess-
ment in a study area in central Vietnam. The new model
is a Bayesian framework constructed by a combination of
a Gaussian mixture model (GMM), radial-basis-function
Fisher discriminant analysis (RBFDA), and a geographic in-
formation system (GIS) database. In the Bayesian frame-
work, GMM is used for modeling the data distribution
of flood-influencing factors in the GIS database, whereas
RBFDA is utilized to construct a latent variable that aims
at enhancing the model performance. As a result, the poste-
rior probabilistic output of the BayGmmKda model is used
as flood susceptibility index. Experiment results showed that
the proposed hybrid framework is superior to other bench-
mark models, including the adaptive neuro-fuzzy inference
system and the support vector machine. To facilitate the
model implementation, a software program of BayGmmKda
has been developed in MATLAB. The BayGmmKda pro-
gram can accurately establish a flood susceptibility map for
the study region. Accordingly, local authorities can overlay
this susceptibility map onto various land-use maps for the
purpose of land-use planning or management.

1 Introduction

Flooding is one of the most destructive natural hazards that
cause heavy loss of human lives and property in immense
spatial extent (Dottori et al., 2016; Komi et al., 2017). Re-
cent statistics on flood damages for the period of 1995–2015
shows that flooding affected 109 million people around the
globe per year (Alfieri et al., 2017) and killed more than
220 000 people (Winsemius et al., 2015). Although the fre-
quency of flooding has decreased in several regions (i.e., in
central Asia and America), flood occurrences have increased
globally by 42 % (Hirabayashi et al., 2013).

Notably, Southeast Asia is one of the most heavily flood-
damaged regions in the world due to monsoonal rainfalls and
tropical hurricane patterns (Loo et al., 2015). Located in this
region, Vietnam is a storm center on the western Pacific, and
this nation has faced the destructive consequence of flooding
in many of its provinces. In Vietnam, floods are often trig-
gered by tropical cyclones. More than 71 % of the Vietnam’s
population and 59 % of the total land area of Vietnam are
susceptible to the impacts of these natural hazards (Tien Bui
et al., 2016c). Based on a report by Kreft et al. (2014), from
1994 to 2013, Vietnam endured an annual economic loss that
is equivalent to USD 2.9 billion.

Additionally, the occurrences of flood in Vietnam are ex-
pected to rise rapidly in the near future due to the increases
in poorly planned infrastructure developments and urbaniza-
tion near watercourses, as well as an increased deforestation
and climate change. Hence, an accurate model for evaluat-
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ing flood hazards for land-use planning becomes a crucial
need for land-use planning as well as establishment of disas-
ter mitigation strategies. Based on flood prediction models,
flood-prone areas can be identified and mapped (Tien Bui et
al., 2016c).

Needless to say, the identification of susceptible areas can
significantly reduce flood damage to the national economy
and human lives by avoiding infrastructure developments and
densely populated settlements in highly flood-susceptible ar-
eas (Zhou et al., 2016). This identification also helps govern-
ment agencies to issue appropriate flood management poli-
cies and to focus its limited financial resources on construct-
ing large-scale flood defense infrastructure in areas that have
great economic value but are highly susceptible to flood
(Bubeck et al., 2012; Mason et al., 2010). Therefore, a tool
for spatial flood modeling is of great usefulness.

To predict flood occurrence, conventional approaches re-
quire time series of meteorological and streamflow data at
gauging stations (Machado et al., 2015). However, this is
difficult for many areas in developing countries where no
gauging stations are available. Therefore, new modeling ap-
proaches should be explored and investigated. Given these
motivations, this study proposes a novel methodology de-
signed for achieving a high prediction accuracy as well as
deriving probabilistic evaluations of flood susceptibility on a
regional scale. Accordingly, spatial prediction of flooding is
carried out based on a statistical assumption that flooding in
the future will occur under the same conditions that triggered
them in the past (Tien Bui et al., 2016b). In this way, the
flood prediction problem boils down to an on–off supervised
classification task, where flood inventories are used to define
the class of flood occurrence. Moreover, the class nonflood
occurrence is derived from areas that have not yet been dam-
aged by flooding. Consequently, spatial prediction of flood-
ing within the study area is achieved based on the probability
of pixels belonging to the class of flood occurrences. To yield
probabilistic outputs of flood susceptibility, this study pro-
poses a Bayesian framework established on the basis of an in-
tegration of a Gaussian mixture model (GMM) and the kernel
Fisher discriminant analysis (KFDA). GMM is employed for
density approximation to calculate the posterior probability
of flood (flood susceptibility index); in addition, KFDA con-
structs a latent variable based on the geoenvironmental con-
ditions to enhance the performance of the Bayesian model.

In essence, the proposed integrated framework contains
two phases of analysis. RBFDA is first employed for la-
tent variable construction. The Bayesian approach assisted
by GMM is then used to perform probabilistic pattern recog-
nition. The first level performs pattern discriminant analy-
sis tasks and the second level carries out the prediction pro-
cess to derive the model output of flood evaluation. Based
on previous studies which indicate that hierarchical model
structures can produce improved prediction accuracy, the
proposed framework could potentially bring about desirable
flood assessment results. The subsequent parts of this study

are organized in the following order: related works on flood
prediction are summarized in Sect. 2. The next section in-
troduces the research method of the current paper, followed
by Sect. 4 which describes the proposed Bayesian model for
flood susceptibility forecasting. Section 5 reports the model
prediction accuracy and comparison. The last section dis-
cusses some conclusions on this work.

2 A review of related works on flood susceptibility
prediction

Because of the criticality of flood prediction, this problem
has gained an increasing attention from the academic com-
munity. Following this trend, various flood analyzing tools
have been developed (Winsemius et al., 2013; Papaioannou
et al., 2015; Gao et al., 2017; Alfieri et al., 2014). Basi-
cally, these tools could be classified into statistical analysis,
rainfall–runoff models, and classification models. Statistical
analysis uses long-term recorded time series data at gauged
stations to establish regression models; accordingly, the con-
structed regression models are used to transform flood infor-
mation to ungauged basins (Yue et al., 1999; Cunnane, 1988;
McCuen, 2016). Thus, these models are capable of providing
discharge predictions both in space and time. However, long-
term data are not always available; in many cases, they are
generally too short for reliable estimations of extreme quan-
tiles (Seckin et al., 2013b; Nguyen et al., 2014).

Rainfall–runoff models, which deal with estimation of
runoff from rainfall, are considered to be the most exten-
sively used approach for flood prediction and management
(Nayak et al., 2013; Ciabatta et al., 2016; Bennett et al.,
2016). Various types of rainfall–runoff models can be found
in the literature, varying from empirical models to highly so-
phisticated physical processes. Empirical models could be
established based on statistical techniques (Brocca et al.,
2011; Neal et al., 2013) or advanced machine learning algo-
rithms (Lohani et al., 2011); such models can be effectively
employed to analyze rainfall and runoff on the basis of histor-
ical time series data. In addition, physical-process models fo-
cus on simulating hydrological processes in a basin based on
a set of mathematical equations governing physical processes
of water flow and surfaces (Aronica et al., 2012; Chiew et al.,
1993; Beven et al., 1984; Birkel et al., 2010; Grimaldi et al.,
2013). In general, rainfall–runoff models require relatively
long-term time series data at gauging stations. However, the
density of gauging stations in developing countries is very
low and this fact creates a great obstacle to the establishment
of accurate hydrological models (Fenicia et al., 2008). In ad-
dition, large-scale field works and deployments of measuring
equipment are necessary for collecting data.

In recent years, a new flood modeling approach called
“on–off” classification of flood occurrence has been success-
fully proposed for spatial prediction of flood (or alternatively
called a flood susceptibility index; Tien Bui et al., 2016d;
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Tehrany et al., 2014, 2015b). Accordingly, no time series data
are required for the model calibration, and the establishment
of flood models is based on flood inventories (flood class) and
nonflood areas (nonflood class). Accordingly, the probability
of a pixel in the study area belonging to the flood class is
used as flood susceptibility index. Moreover, it is noted that
the results of the model depend on the collection of sufficient
training data. Although the flood susceptibility map provides
no temporal prediction or return period of flood, the flood
map is capable delineating highly susceptible areas. Thus,
it is a powerful flood analysis tool for decision-makers that
could be used in land-use planning and flood management.

The literature review shows that data-driven methods in-
tegrated with GIS databases have demonstrated their effec-
tiveness and accuracy in large-scale flood susceptible predic-
tions. An fuzzy-logic-based algorithm, established by Pul-
virenti et al. (2011), has been used to develop a map of
flooded areas from synthetic aperture radar imagery; this al-
gorithm is used for the operational flood management sys-
tem in Italy. A model based on the frequency ratio approach
and GIS for spatial prediction of flooded regions was first in-
troduced by Lee et al. (2012); the spatial database was con-
structed by field surveys and maps of the topography, geol-
ogy, land cover, and infrastructure.

Prediction models with artificial neural networks (ANNs)
have been employed for flood susceptibility evaluation by
various scholars (Kia et al., 2012; Seckin et al., 2013a; Reza-
eianzadeh et al., 2014; Radmehr and Araghinejad, 2014);
previous works have shown that an ANN is a capable non-
linear modeling tool. Nevertheless, ANN learning is prone to
overfitting, and its performance has been shown to be infe-
rior to that of support vector machines (SVMs; Hoang and
Pham, 2016). Kazakis et al. (2015) introduced a multicriteria
index to assess flood hazard areas that relies on GIS and ana-
lytical hierarchy processes (AHPs); in this methodology, the
relative importance of each flood-influencing factor for the
occurrence and severity of flood was determined via AHP.
More recently, support-vector-machine-based flood suscep-
tibility analysis approaches have been proposed by Tehrany
et al. (2015a, b); the research finding is that SVM is more ac-
curate than other benchmark models, including the decision
tree classifier and the conventional frequency ratio model.

Mukerji et al. (2009) constructed flood forecasting mod-
els based on an adaptive neuro-fuzzy interference system
(ANFIS), genetic algorithm optimized ANFIS; experiments
demonstrated that ANFIS attained the most desirable accu-
racy. Recently, a metaheuristic optimized neuro-fuzzy infer-
ence system, named as MONF, has been introduced by Tien
Bui et al. (2016c); this research pointed out that MONF is
more capable than decision tree, ANN, SVM, and conven-
tional ANFIS methods.

As can be seen from the literature review, various data-
driven and advanced soft-computing approaches have been
proposed to construct different flood forecasting models. In
most previous studies, the flood prediction was formulated

as a binary pattern recognition problem in which the model
output is either flood or no flood. Probabilistic models have
rarely been examined to cope with the complexity as well
as uncertainty of the problem under concern. Therefore, our
research aims to enrich the body of knowledge by proposing
a novel Bayesian probabilistic model to estimate the flood
vulnerability with the use of a GIS database.

3 Research method

3.1 Flood inventory map and flood-influencing factors
of the study area

3.1.1 The study area

In this research, Tuong Duong district (central Vietnam) is
selected as the study area (see Fig. 1). This is by far one of
the most heavily affected flood regions in the country (Rey-
naud and Nguyen, 2016). The area of the district is approx-
imately 2803 km2. The district is located between the longi-
tudes of 18◦58′42′′ N and 19◦39′16′′ N and between the lat-
itudes of 104◦15′′58′ E and 104◦55′′57′ E. The topographi-
cal features of the Tuong Duong district are inherently com-
plex, with mountainous areas, watersheds, and rivers. Dras-
tic floods often divided the district into several isolated areas
which are very difficult to approach for rescuing or evacua-
tion purposes.

The district has two separated seasons, namely a cold sea-
son (from November to March) and a hot season (from April
to October). The yearly rainfall of the district is within the
range of 1679–3259 mm. The rainfall amount is primarily in-
tensified during the rainy period which contributes to roughly
90 % of the total annual rainfall. Due to the district’s location
as well as its topographic and climatic features, the study area
is highly susceptible to flood events with immense effects on
the rate of human casualties and economic loss. An exami-
nation carried out by Reynaud and Nguyen (2016) reported
that approximately 40 % of families have been affected by
floods and roughly 20 % of families must be relocated away
from the flooded areas; the average loss from flooding is up
to 24 % of the family income each year.

3.1.2 Flood inventory map

Prediction of flood zones can be based on an assumption that
future flood events are governed by the very similar condi-
tions of flooded zones in the past. Therefore, flood invento-
ries and the geoenvironmental conditions (e.g., topological
and hydrological features) that produced them must be ex-
tensively determined and collected (Tien Bui et al., 2016c;
Tehrany et al., 2015b). The first step of this analysis is to
establish a flood inventory map for the region under investi-
gation. In this study, the flood inventory map established by
Tien Bui et al. (2016c) was used to analyze the relationships
between flood occurrences and influencing factors.
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Figure 1. Location of the Tuong Duong district (central Vietnam).

The flood inventory map stores documentations of past
flood events (see Fig. 1). It is noted that the type of floods
in this study area are flash floods. This is the main flood
type in this region due to characteristics of the terrain. The
map was constructed by gathering information of the study
area, field works at flood areas, and analyses from results of
the Landsat-8 operational land imagery (from 2010 to 2014)
with a resolution of 30 m (retrieved from http://earthexplorer.
usgs.gov). Furthermore, the location of flood events was also
verified by field works carried out in 2014 with handhold
GPS devices. In summary, the total number of flood loca-
tions during the last 5 years was recorded to be 76. It is
noted that flood locations were determined by overlaying the
flood polygons in the inventory map and the digital elevation
model (DEM). Moreover, only pixels in the map that are as-
sociated with flood points are used to extract the influencing
factors used for flood prediction.

Although the data for this study were collected from 2010
to 2014, there were recurrent flash floods which occurred
during tropical typhoons in this period. Thus, it is reason-
able to conclude that all significant flash flood locations in
the study area have been revealed and determined. It should
be noted that due to the statistical assumption used in this
study, the inclusion of flood locations in the distant past (i.e.,
before the year of 2009) for flood susceptibility analysis may
cause bias. It is because the construction of new hydropower
dams such as Ban Ve (from 2010) and Nam Non (from 2011)

and deforestation or forestation have changed the geoenvi-
ronmental conditions in the study area (Dao, 2017; Manley et
al., 2013). In other words, the geoenvironmental conditions
of the distant past are very different to those of the present
time; therefore, flood locations in the distant past should not
be included in the current analysis.

3.1.3 Flood-influencing factors

To construct a flood prediction model, besides the flood in-
ventory map, it is crucial to determine the flood-influencing
factors (Tehrany et al., 2015a). It is proper to note that the
selection of the flood-governing factors varies due to differ-
ent characteristics of study areas and the availability of data
(Papaioannou et al., 2015). Based on the previous work of
Tien Bui et al. (2016c), the physical relationships between
influencing factors and flood processes have been analyzed.
Accordingly, a total of 10 influencing factors were selected
in this study; they include slope (IF1), elevation (IF2), cur-
vature (IF3), topographic wetness index (TWI; IF4), stream
power index (SPI; IF5), distance to river (IF6), stream density
(IF7), normalized difference vegetation index (NDVI; IF8),
lithology (IF9), and rainfall (IF10). These factors are used to
analyze the flood vulnerability for the studied area, and a GIS
database consisting of the flood inventory map and the cho-
sen factors has been established. The description of the 10 in-
fluencing factors of flood occurrence employed in this study
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Table 1. Flood-influencing factors and their categories.

Factors Coding Description of factor categories

Slope (◦) IF1 1 (0–0.5); 2 (0.5–2); 3 (2–5); 4 (5–8); 5 (8–13); 6 (13–20); 7 (20–30);
8 (> 30)

Elevation (100 m) IF2 1 (< 1); 2 (1–2); 3 (2–3); 4 (3–4); 5 (4–5); 6 (5–6); 7 (6–7); 8 (7–10);
9 (10–13); 10 (> 13)

Curvature IF3 1 (<−2); 2 (−2 to −0.05) ; 3 (−0.05–0.05); 4 (0.05–2); 5 (> 2)

Topographic wetness index (TWI) IF4 1 (< 6.5); 2 (6.5–7.5); 3 (7.5–8.5); 4 (8.5–9.5); 5 (9.5–10.5);
6 (10.5–11.5); 7 (11.5–12.5); 8 (> 12.5)

Stream power index (SPI) IF5 1 (< 1); 2 (1–3); 3 (3–5); 4 (5–7); 5 (7 to10); 6 (10–15); 7 (15–20);
8 (20–30); 9 (30–50); 10 (> 50)

Distance to river (m) IF6 1 (< 40); 2 (40–80); 3 (80–120); 4 (120–200); 5 (200–400);
6 (400–700); 7 (700–1500); 8 (> 1500)

Stream density (km km−2) IF7 1 (< 1); 2 (1–3); 3 (3–5); 4 (5–7); 5 (7–9); 6 (> 9)

Normalized difference vegetation index (NDVI) IF8 1 (< 0.3); 2 (0.3–0.35); 3 (0.35–0.4); 4 (0.4–0.45); 5 (0.45–0.5);
6 (0.5–0.55); 7 (0.55–0.6); 8 (> 0.6)

Lithology (rock type) IF9 1 (Q); 2 (Nkb); 3 (Jmh); 4 (T3npb); 5 (T2); 6 (C-bslk); 7 (D-ntdl);
8 (S2-D1hn); 9 (O3-S1sc3); 10 (O3-S1sc2); 11 (O3-S1sc1); 12 (PR2bk)

Rainfall (1000 mm) IF10 1 (< 1.82); 2 (1.82–1.92); 3 (1.92–2.02); 4 (2.02–2.12); 5 (2.12–2.22);
6 (2.22–2.32); 7 (2.32–2.42); 8 (> 2.42)

is summarized in Table 1. The distributions of the 10 factors
within the studied region are illustrated in Fig. 2.

3.2 Bayesian framework for flood classification

The flood prediction in this study is considered as a pattern
classification problem within which “flood” and “nonflood”
are the two class labels of interest. As a result, the probability
(posterior probability) of pixels belonging to the flood class,
which are derived from the model, will be used as suscep-
tibility indices. These susceptibility indices of the pixels are
then used to generate the flood susceptibility map. To cope
with the complexity as well as the uncertainty of the problem
of interest, a Bayesian framework is employed in this study to
evaluate the flood susceptibility of each data sample. Figure 3
demonstrates the general concept of the Bayesian framework
used for classification.

The Bayesian framework provides a flexible way for prob-
abilistic modeling. This method features a strong ability for
dealing with uncertainty and noisy data (Theodoridis, 2015;
Cheng and Hoang, 2016). Nevertheless, previous studies
have rarely examined the capability of this approach for in-
ferring flood susceptibility. Basically, pattern classification
aims at assigning a pattern to one of M = 2 distinctive class
labels Ck , in which k is either 1 or 2. C1 = 1 and C2 = 0
denote the flood class and the nonflood class, respectively.
To recognize an input pattern based on the information sup-
plied by its feature vector X, we need to attain the poste-

rior probability P(Ck|X), which indicates the likelihood that
the feature vector X falls into a certain group Ck . Based on
such information, the pattern will be categorized to the group
with the highest posterior probability. The posterior proba-
bility P(Ck|X) is calculated as follows (Webb and Copsey,
2011):

P(Ck|X)=
p(X|Ck)×P(Ck)

p(X)
, (1)

where P(Ck|X) denotes the posterior probability. The term
p(X|Ck) represents the likelihood, which is also called the
class-conditional probability density function (PDF). P(Ck)
denotes the prior probability, which implies the probability
of the class before any feature is measured. The denomi-
nator p(X) is the evidence factor; this quantity is merely a
scale factor for guaranteeing that the posterior probabilities
are valid; it can be calculated as follows:

P(X)=

M∑
k=1

p(X|Ck)×P(Ck). (2)

Generally, the prior probabilities P(Ck) can be calcu-
lated by computing the ratio of training instances in each
class. Thus, the bulk of establishing a Bayesian classification
model is the calculation of the likelihood p(X|Ck). This like-
lihood expresses the density of input patterns in the learning
space within a certain group of data. In most of situations,
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Figure 2.
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Figure 2. Flood-influencing factors: (a) slope, (b) elevation, (c) curvature, (d) topographic wetness index, (e) stream power index, (f) distance
to river, (g) stream density, (h) normalized difference vegetation index, (i) lithology, and (j) rainfall.

p(X|Ck) is unknown and must be estimated from the avail-
able data. In this research, the Gaussian mixture model is uti-
lized for computing the class-conditional probability density
function p(X|Ck).

3.3 Gaussian mixture model for density estimation

3.3.1 Gaussian mixture model

It is noted that the posterior probability value (Eq. 1) for
each pixel of the study area is used as flood susceptibility in-
dex. To obtain the posterior probability, the class-conditional
PDF must be estimated. This section presents how PDF is
estimated by a Gaussian mixture model. A GMM is se-
lected in this research because it has been shown to be an

effective parametric method for modeling of data distribu-
tion, especially in high-dimensional space (McLachlan and
Peel, 2000; Theodoridis and Koutroumbas, 2009). Previous
studies (Paalanen, 2004; Figueiredo and Jain, 2002; Gómez-
Losada et al., 2014; Arellano and Dahyot, 2016) point out
that any continuous distribution can be approximated arbi-
trarily well by a finite mixture of Gaussian distributions. Due
to their usefulness as a flexible modeling tool, GMMs have
received an increasing amount of attention from the aca-
demic community (Zhang et al., 2016; Khanmohammadi and
Chou, 2016; Ju and Liu, 2012).

www.geosci-model-dev.net/10/3391/2017/ Geosci. Model Dev., 10, 3391–3409, 2017
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Figure 3. General concept of the Bayesian Framework for flood
classification.

In a d-dimensional space the Gaussian PDF is defined
mathematically in the following form:

N(x|θ)= (3)

1
(2π)d/2|6|1/2

exp
{
−

1
2
(x−µ)T6−1(x−µ)

}
,

where µ denotes the vector of variable mean, 6 represents
the matrix of covariance, and θ = {µ,6} denotes a set of dis-
tribution parameter.

A GMM is, in essence, an aggregation of several multivari-
ate normal distributions; hence, its PDF for each data sample
is computed as a weighted summation of Gaussian distribu-
tions (see Fig. 4):

p(x|2)=

k∑
i=1

αipi(x|θi)=

k∑
i=1

αiN(x|θi), (4)

where 2= {α1,α2, . . .,αk,θ1,θ2, . . .,θk}. {α1,α2, . . .,αk} is
called the mixing coefficients of k Gaussian components and
k∑
i=1
αi = 1.

Accordingly, the PDF for all data samples can be ex-
pressed as follows (Ju and Liu, 2012):

p(X|2)=

n∏
t=1
p(xt |2)= L(2|X). (5)

Identifying a GMM’s parameters 2 can be considered as
an unsupervised learning task within which a dataset of in-
dependently distributed data points X = {x1,xN }, generated
from an integrated distribution dictated via the PDF p(X|2).
The goal is to find the most appropriate value of 2, denoted

x(t)

p(x(t)|θ1) p(x(t)|θi) p(x(t)|θk) 

...

Σ p(x(t)|Θ ) 

α1
αi αk

...

Figure 4. Structure of a Gaussian mixture model.

as 2e, that maximizes the log-likelihood function:

2e = argmax
2

log(L(X,2))= log

(
n∏
t=1
p(xt |2)

)
(6)

=

n∑
t=1

log

(
k∑
i=1

αipi (xt |θi)

)
.

Practically, instead of dealing with the log-likelihood func-
tion, an equivalent objective function Q is optimized (Ju and
Liu, 2012).

Max.Q=
n∑
t=1

k∑
i=1

wit log[αipi(xt |θi)], (7)

where wit is a posteriori probability for the ith class, i =
1, . . .,k, and wit satisfies the following conditions:

wit =
αipi(xt |θi)

k∑
s=1

αsps(xt |θs)

;

k∑
i=1

wit = 1. (8)

In order to compute 2e in Eq. (6), the Expectation Max-
imization (EM) algorithm is employed. In addition, an un-
supervised learning approach proposed by Figueiredo and
Jain (2002) is used for determining 2. These two algorithms
are briefly reviewed in the next section of the paper.

3.3.2 Learning of the finite-mixture model with the
expectation maximization algorithm

The expectation maximization (EM) method is a statistical
approach to fit a GMM based on historical data; this method
converges to a maximum likelihood estimate of model pa-
rameters (McLachlan and Krishnan, 2008). It can be recapit-
ulated as follows (McLachlan and Peel, 2000). Commencing
from an initial parameter 2o, an iteration of the EM algo-
rithm consists of the E step in which the current conditional
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probabilities pi(xt |θi)=N(xi |µi,6i) that xt generated from
the ith mixture component are calculated, and the M step
within which the maximum likelihood estimates of θi are up-
dated. The iteration of EM algorithm terminates when the
change value of the objective function is lower than a thresh-
old value.

These two steps of the EM procedure are stated as follows:
(i) E step: estimating the expected classes of all data samples
for each class wit based on Eq. (8) and (ii) M step, calculat-
ing maximum likelihood given the data’s class membership
distribution using the following equations:

αnew
i =

1
n

n∑
t=1

wit , (9)

µnew
i =

n∑
t=1

witxt/

n∑
t=1

wit , (10)

6new
i =

(
n∑
t=1

wit
(
xt −µ

new
i

)(
xt −µ

new
i

)T)
/

n∑
t=1

wit . (11)

3.3.3 Unsupervised learning of finite-mixture model

The EM algorithm increases the log-likelihood iteratively
until convergence is detected, and this approach generally
can derive a good set of estimated parameters. Nonetheless,
EM suffers from low convergence speed in some datasets,
high sensitivity to initialization condition, and suboptimal
estimated solutions (Biernacki et al., 2003). Moreover, addi-
tional efforts are required to determine an appropriate num-
ber of Gaussian distributions within the mixture.

As an attempt to alleviate such drawbacks of EM,
Figueiredo and Jain (2002) put forward an unsupervised al-
gorithm for learning a GMM from multivariate data. The al-
gorithm features the capability of identifying a suitable num-
ber of Gaussian components autonomously, and through ex-
periments the authors show that the algorithm is not sensitive
to initialization. In other words, this unsupervised approach
incorporates the tasks of model estimation and model selec-
tion in a unified algorithm. Generally, this method can ini-
tiate with a large number of components. The initial values
for component means can be assigned to all data points in
the training set; in an extreme case, it is possible to distribute
the component number equal to the data point number. This
algorithm gradually fine-tunes the number of mixture com-
ponents by casting out elements of normal distributions that
are irrelevant for the data modeling process (Paalanen, 2004).

Furthermore, Figueiredo and Jain (2002) employed the
minimum message length (MML) criterion (Wallace and
Dowe, 1999) as an index for model selection; the applica-
tion of this criterion for the case of GMM learning leads to

the following objective function (Figueiredo and Jain, 2002):

�(2|X)= (12)

N

2

ln
(
nαi
12

)
+
Cnz

2∑
i:αi>0

ln
( n

12

)
+
Cnz(N + 1)

2
− lnL(X,2),

where n denotes the size of the training set, N represents the
number of hyper-parameters needed to construct a Gaussian
distribution, and Cnz is the number of Gaussian distribution
components featuring nonzero weight (αi > 0). Accordingly,
the EM method is then utilized to minimize Eq. (12) with a
fixed number of Cnz.

In detail, the EM algorithm is employed to estimate αi as
follows:

αnew
i =

max{0,
(

n∑
t=1
wit

)
−
N
2 }

k∑
j=1

max
{

0,
(

n∑
t=1
wj t

)
−
N
2

} . (13)

Accordingly, the parameters µnew
i and 6new

i are updated
based on Eqs. (10) and (11), respectively. The algorithm
stops when the relative decrease in the objective function
�(2|X) becomes smaller than a preset threshold (e.g.,
10−5).

3.4 Radial-basis-function Fisher discriminant analysis
for generation of latent variables

In machine learning, the performance of a model may be
enhanced if latent variables are used (Yu, 2011). Therefore,
latent variable approach is employed in this research. Ac-
cordingly, radial-basis-function Fisher discriminant analysis
(RBFDA) proposed Mika et al. (1999), an extension of the
Fisher Discriminant Analysis for dealing with data nonlin-
earity, is used to generate a latent factor for flood analysis.
Thus, RBFDA is utilized to project the feature from the orig-
inal learning space to a projected space that expresses a high
degree of class reparability (Theodoridis and Koutroumbas,
2009). Using this kernel technique, the data from an input
space I is first mapped into a high-dimensional feature space
F . Hence, discriminant analysis tasks can be performed non-
linearly in I.

Herein, ϕ(.) is defined as a transformation from an input
space I to a high-dimensional feature space F ; to compute w

(the projecting vector), it is necessary to maximize the Fisher

www.geosci-model-dev.net/10/3391/2017/ Geosci. Model Dev., 10, 3391–3409, 2017



3400 D. Tien Bui and N.-D. Hoang: BayGmmKda V1.1

Topographic 
map

Geological and 
mineral map

Climatological 
data

Slope Elevation Curvature TWI SPI
Distance to 

river

Stream 

density
NVDI Lithology Rainfall

Landsat-8
OLI imagery

Fieldwork
handheld GPS

DEM

Landsat-8
OLI imagery

Local documents 

GIS data processing

Flood inventory 
map

GIS 
database

Historical cases of flood 

occurrences

 Conditioning factors

 State of flood occurrence

Figure 5. The established GIS database.

discriminant ratio as follows:

J (w)=
wT S

ϕ
Bw

wT S
ϕ
Ww

, (14)

whereSϕB =
(
m
ϕ
1 −m

ϕ
2
)(
m
ϕ
1 −m

ϕ
2
)T
, (15)

S
ϕ
W =

C∑
k=1

Nk∑
i=1

(
ϕ(xi)−m

ϕ
k

)(
ϕ(xi)−m

ϕ
k

)T
, (16)

m
ϕ
k =

1
Nk

Nk∑
i=1

ϕ
(
xki

)
. (17)

To obtain w, the kernel trick is applied. Thus, one only
needs to establish a formulation of the algorithm which only
requires dot-product ϕ(x) ·ϕ(y) of the training data and em-
ploy kernel functions which calculate ϕ(x)·ϕ(y). The widely
employed radial-basis kernel function (RBKF) is expressed
in the following formula (with σ denoting the kernel function
bandwidth):

K(x,y)= exp

(
−
‖x− y‖2

2σ 2

)
. (18)

Since a solution of the vector w lies in the span of all data
samples in the projected space, the transformation vector w

is shown in the following formula:

w =

N∑
i=1

αiϕ(xi). (19)

From Eqs. (17) and (19), we have the following:

wTm
ϕ
k =

1
Nk

N∑
j=1

Nk∑
i=1

αjk
(
xj ,x

k
i

)
= αTMk, (20)

Mk =
1
Nk

Nk∑
i=1

k
(
xj ,x

k
i

)
.

Taking into account the formulas of J (w), SϕB , as well as
Eq. (20), we can restate the numerator of Eq. (14) in the fol-
lowing manner:

wT S
ϕ
Bw = αTMα, (21)

where M = (M1−M2)(M1−M2)
T .

Based on the Eq. (17) that defines mϕk , the denominator of
Eq. (14) can be demonstrated in the following way:

wT S
ϕ
Ww = αTNα, (22)

where N =
2∑
k=1

Kk(I− 1lk )KT
k , Kk denotes a N ×Nk kernel

matrix with a typical element is k
(
xn,x

k
m

)
, and I represents

the identity matrix and 1lk is a matrix within which all posi-
tions are 1/lk .

Considering all Eqs. (14), (21), and (22), the solution of
RBFDA can be found by maximizing the following:

J (α)=

(
αTMα

)(
αTNα

) . (23)

The optimization problem with the objective function ex-
pressed in Eq. (23) is found by identifying the primal eigen-
vector of N−1M . Based on the optimization results, an input
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patter in I is projected on to a line defined by the vector w in
the following manner:

w ·ϕ(x)=

N∑
i=1

αik(xi,x). (24)

4 The proposed Bayesian framework for flood
susceptibility prediction

4.1 The established GIS database

To formulate a flood assessment model, the first stage is to
construct a GIS database (see Fig. 5) within which locations
of past flood events, maps of topographic feature, Landsat-8
imagery, maps of geological features, and precipitation sta-
tistical records are acquired and integrated. In this study, the
data acquisition, processing, and integration were performed
with ArcGIS (version 10.2) and IDRISI Selva (version 17.01)
software packages.

Furthermore, a C++ application has been developed by
the authors to transform the flood susceptibility indices into
a GIS format for ArcGIS implementation. Accordingly, the
compiled outcomes are employed to form a database that
includes the aforementioned flood-influencing features with
two class outputs: flood and nonflood. As mentioned earlier,
a total of 76 flood locations have been recorded. To balance
the dataset and reliably construct the flood prediction model,
76 locations of nonflood areas are randomly sampled and
included for analysis. Hence, the total database consists of
152 data samples.

4.2 The proposed model structure

The proposed model for flood susceptibility assessment that
incorporates RBFDA, the Bayesian classification framework,
and GMM is presented in this section of the study. The over-
all flowchart of the proposed Bayesian framework based on
GMM and RBFDA for flood susceptibility prediction, named
as BayGmmKda, is demonstrated in Fig. 6.

Firstly, the whole dataset, including 152 data samples, was
separated into two sets: a training set (90 % or 137 samples),
employed for model establishing, and a testing set (10 % or
15 samples), used for model testing. It is noted that the in-
put variables of the dataset have been normalized using the
minimum–maximum normalization; the purpose of data nor-
malization was to hedge against the situation of unbalanced
variable magnitudes.

Secondly, a latent input factor was generated using the
RBFDA (explained in Sect. 3.4) and added to the training
dataset, with the aim of enhancing the classification perfor-
mance. Subsequently, the feature evaluation was performed
to quantify the degree of relevance of each input factors with
the flood inventories in the training set. Any nonrelevant fac-
tor should be eliminated from the modeling process to reduce

noise and enhance the model performance (Tien Bui et al.,
2016a, 2017). For this purpose, in this research, the Mutual
Information Criterion (Kwak and Choi, 2002; Hoang et al.,
2016), a widely employed techniques for feature selection in
machine learning, was selected to express the pertinence of
each influencing factors to the flood. It is noticed that the
larger the mutual information, the stronger the relevancy be-
tween the influencing factor and flood.

In the next step, the BayGmmKda model was trained and
established using the training set. The purpose of the train-
ing process was to find the best parameters for the mixture
component (k) used in GMM and the kernel function band-
width (σ ) used in RBFDA of the BayGmmKda model. To
determine the best k, the EM algorithm that employs Akaike
information criterion (AIC; Akaike, 1974) was used. Thus,
the value of k was varied from 1 to 20, and then AIC was
estimated and used to select the model that exhibits the best
fit to the data at hand. It is noted that a model with a num-
ber of mixture components (k) indicates a lesser degree of
complexity (Olivier et al., 1999). In addition, the unsuper-
vised GMM learning (Figueiredo and Jain, 2002) is also used
for autonomously determining the best k. Accordingly, the
model starts with a maximum component number (k) of 20;
the algorithm carries out the model selection process by re-
moving irrelevant mixture components if applicable. To de-
termine the best σ , the grid search procedure is performed
and the parameter σ corresponding to the highest classifica-
tion accuracy rate was selected.

Using the best k and σ in the previous step, the final BayG-
mmKda model was finally constructed and the Bayesian clas-
sification framework was derived. The Bayesian framework
was then used to estimate the posterior probability (flood sus-
ceptibility index) for all the pixels in the study areas. The
flood susceptibility index was then transferred to a raster for-
mat to open in ArcGIS.

4.3 The developed MATLAB interface of BayGmmKda

It is noted that the coupling of the GMM with the EM training
algorithm is implemented with the MATLAB statistical tool-
box (MathWorks, 2012a); meanwhile, the BayGmmKda per-
forms the unsupervised algorithm with the program code pro-
vided by Mário A. T. Figueiredo (http://www.lx.it.pt/~mtf/,
last access: 1 April 2016). The RBFDA algorithm and the
unified BayGmmKda model have been coded in MATLAB
by the authors. In addition, a software program with a graph-
ical user interface (GUI; see Fig. 7) for the implementation
of the BayGmmKda model has been coded in a MATLAB
environment by the authors. The GUI development aims at
providing a user-friendly system for performing flood sus-
ceptibility predictions.

As shown in Fig. 7, the program consists of three modules:
data process and visualization, model training, and model
prediction. The first module provides basic functions for data
inspection and visualization, including data normalization,
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Figure 7. Main menu of BayGmmKda.

data viewing, and preliminary feature selection with mutual
information. In the second module, the users simply pro-
vide model parameters, including the kernel function param-
eter and the GMM training method. The trained model is
employed to carry out prediction tasks in the third module,
within which the model prediction performance is reported.

5 Experimental results

5.1 Feature selection and training of the BayGmmKda
model

The outcome of the preliminary examination on the perti-
nence of flood-influencing factors is reported in Fig. 8a. As
mentioned earlier, the relevancies of influencing factors are
exhibited by the mutual information criterion. Based on the
outcome, IF5 (SPI) features the highest mutual dependence,
followed by IF7 (stream density) and IF8 (NVDI). Influenc-

ing factors of IF4 (TWI) and IF10 (rainfall) exhibit compara-
tively low values of mutual information. Because all the mu-
tual information values are not null, all influencing factors
are deemed to be relevant and should be retained for the sub-
sequent processes of model training and prediction.

It is worth keeping in mind that the BayGmmKda’s train-
ing phase is executed in two consecutive steps, training
RBFDA and training GMM. RBFDA analyzes the data in
the training set to establish a latent factor which is a one-
dimensional representation of the original input pattern.
Figure 8b shows the resulted latent factor constructed by
RBFDA. In the next step of the training phase, GMM is
constructed by the original input patterns with their corre-
sponding labels which consist of 10 input factors and with
the RBFDA-based latent factor.

The classification accuracy rate (CAR) is employed to ex-
hibit the rate of correctly classified instances. In addition, a
more detailed analysis on the model capability can be pre-
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Figure 8. (a) Mutual information of flood-influencing factors; (b) RBFDA-based latent factor derived in this study.

sented by calculating true positive rate (TPR), false positive
rate (FPR), false negative rate (FNR), and true negative rate
(TNR). These four rates are also widely utilized to exhibit
the predictive capability of a prediction model (Hoang and
Tien-Bui, 2016).

TPR=
TP

TP+FN
,

FPR=
FP

FP+TN
, (25)

FNR=
FN

TP+FN
,

TNR=
TN

TN+FP
,

where TP, TN, FP, and FN represent the values of true posi-
tive, true negative, false positive, and false negative, respec-
tively.

In addition to the four rates, the receiver operating char-
acteristic (ROC) curve (van Erkel and Pattynama, 1998) is
used to summarize the global performance of the model. The
ROC curve basically demonstrates the trade-off between the
two aforementioned TPR and FPR, when the threshold for
accepting the positive class of flood varies. In addition, the
area under the ROC curve (AUC) is employed to quantify
the global performance. In generally, a better model is char-
acterized by a larger value of the AUC.

As aforementioned, the dataset is randomly separated into
the training set and the testing set which occupy 90 and 10 %
of the data samples, respectively. The training set is em-
ployed to train the mode; meanwhile, the testing set is used
for validating the model capability after being trained. Since
one selection of data for the training set and the testing set
may not truly demonstrate the model’s predictive capabil-
ity, this study carries out a repetitive subsampling procedure
within which 30 experimental runs are carried out. In each
experimental run, 10 % of the dataset is retrieved in a ran-
dom manner from the database to constitute the testing set;
the rest of the database is included in the training set.

Table 2. Prediction results of BayGmmKda.

Dataset CAR (%) AUC TPR FPR FNR TNR

Average

BayGmmKda-EM 86.67 0.93 0.95 0.12 0.15 0.85
BayGmmKda-UL 89.58 0.94 0.96 0.12 0.09 0.91

Standard deviation

BayGmmKda-EM 6.51 0.07 0.05 0.10 0.12 0.12
BayGmmKda-UL 7.22 0.05 0.04 0.11 0.10 0.10

The testing performance of the proposed Bayesian frame-
work for flood susceptibility is reported in Table 2 and
Fig. 9, which provides the average ROC curves of the pro-
posed model framework, obtained from the random sub-
sampling process, with two methods of GMM training.
Herein, the two Bayesian models that employ the EM
algorithm and the unsupervised learning (UL) algorithm
for training GMM are denoted as BayGmmKda-EM and
BayGmmKda-UL, respectively. It can be seen that the
BayGmmKda-UL model demonstrates clearly better pre-
dictive performance (CAR= 89.58 %, AUC= 0.94, TPR=
0.96, TNR= 0.91) than that of the BayGmmKda-EM model
(CAR= 86.67 %, AUC= 0.93, TPR= 0.95, TNR= 0.85).
Although the performances of the BayGmmKda-EM model
and the BayGmmKda-UL model are comparable in TPR,
however, the BayGmmKda-UL model is deemed more accu-
rate than the BayGmmKda-EM model when the two models
predict samples with the nonflood class.

5.2 Model comparison

Because this is the first time the BayGmmKda model has
been proposed for the measurement flood susceptibility, the
validity of the proposed model should be assessed. Hence,
the benchmarks were used for the comparison, including
the support vector machine, adaptive neuro-fuzzy inference
system, and the GMM-based Bayesian classifier. The above
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Figure 9. ROC plots of the proposed BayGmmKda.

machine learning techniques were selected because SVM
and ANFIS have been recently verified to be effective tools
for predicting flood susceptibility (Tien Bui et al., 2016c;
Tehrany et al., 2015b). It is noted that the GMM-based
Bayesian classifier (BayGmm) is the Bayesian framework for
classification which employs GMM for density estimation;
however, BayGmm is not integrated with the RBFDA algo-
rithm. BayGmm is used in the performance comparison sec-
tion to confirm the advantage of the newly constructed BayG-
mmKda and to verify the usefulness of RBFDA in enhancing
the discriminative capability of the hybrid framework.

To construct the SVM model, the model’s hyperparam-
eters of the regularization constant (C) and the parameter
of the radial-basis kernel function (σ ) need to be speci-
fied. Herein, a grid search process, which is identical to the
one used to identify the kernel function bandwidth used in
RBFDA, is employed to fine-tune such hyperparameters of
the SVM model. It is noted that the SVM method is imple-
mented in a MATLAB package (MathWorks, 2012b). Mean-
while, the ANFIS model is trained with the metaheuris-
tic approach described in the previous work of Tien Bui et
al. (2016c).

It is noted that a random subsampling with 30 runs
is employed for all models in this experiment. The re-
sult comparison between the proposed BayGmmKda model
and three benchmark models is shown in Table 3. The
result shows that the proposed model yields the best re-
sults (CAR= 89.58 % and AUC= 0.94). It is followed
by the ANFIS model (CAR= 85.63 %, AUC= 0.83); the
BayGmm model (85.02 %, AUC= 0.92), and the SVM
model (83.75 %, AUC= 0.82).

To confirm the performance of the proposed BayGmmKda
model is significantly higher than that of the three bench-
mark model, the Wilcoxon signed-rank test is employed. The
Wilcoxon signed-rank test is widely used to evaluate whether
classification outcomes of prediction models are significantly

Table 3. Performance comparison of the BayGmmKda model with
the three benchmarks, the SVM model, the ANFIS model, and the
BayGmm model.

Models CAR (%) AUC TPR FPR FNR TNR

Average

BayGmmKda 89.58 0.94 0.96 0.12 0.09 0.91
ANFIS 85.63 0.83 0.84 0.13 0.16 0.87
BayGmm 85.02 0.92 0.82 0.13 0.17 0.88
SVM 83.75 0.82 0.78 0.10 0.22 0.90

Standard deviation

BayGmmKda 7.22 0.05 0.04 0.11 0.10 0.10
ANFIS 6.17 0.05 0.14 0.10 0.14 0.10
BayGmm 7.24 0.08 0.11 0.10 0.11 0.10
SVM 10.33 0.06 0.16 0.11 0.16 0.11

Table 4. Model comparison based on the Wilcoxon signed-rank test.

BayGmmKda ANFIS BayGmm SVM

BayGmmKda ++ ++ ++

ANFIS - - + +

BayGmm - - - +

SVM - - -

dissimilar (Tien Bui et al., 2016e). Using this test, the p val-
ues that were obtained from experimental results of the four
models can be computed using a threshold value of 0.05. The
result of the Wilcoxon signed-rank test is shown in Table 4.
It is noted that the signs “++”, “+”, “- -”, and “-” represent
a significant win, a win, a significant loss, and a loss, respec-
tively. The result confirms that the proposed BayGmmKda
model achieves significant wins over the other models.
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Figure 10. The flood susceptibility map using the proposed BayGmmKda model for the study area.

5.3 Construction of the flood susceptibility map

Experimental outcomes have indicated that the BayGmmKda
model is the best for this study area, and therefore the model
was used to compute the posterior probability for all the pix-
els of the study area. The posterior probability values that
were used as flood susceptibility indices were further trans-
formed to a raster format and open in ArcGIS 10.4 soft-
ware package. Using these indices, the flood susceptibility
map (see Fig. 10) was derived and visualized by the mean of
five classes: very high (10 %), high (10 %), moderate (10 %),
low (20 %), and very low (50 %). The threshold values for
separating these classes were determined by overlaying the
historical flood locations and the flood susceptibility indices
map (Tien Bui et al., 2016c), and then a graphical curve (see
Fig. 10) was constructed and the threshold values were de-
rived.

Interpretation of the map shows that 10 % of the Tuong
Duong district was classified into the very high class and
this class covers 73.68 % of the total historical flood lo-
cations. Meanwhile, both the high class and the moderate
classes cover 10 % of the region but account for only 15.79

and 7.9 % of the total historical flood locations, respectively,
whereas the low class covers 20 % of the district but it con-
tains only 2.63 % of the total historical flood locations. In
particular, 50 % of the district, which is categorized to the
very low class, contains no flood location. These results indi-
cate that the proposed BayGmmKda model has successfully
delineated susceptible flood-prone areas. In other words, the
interpretation results confirm the reliability of the proposed
Bayesian framework in this work.

6 Conclusion

This research has developed a new tool, named as BayG-
mmKda, for flood susceptibility evaluation, with a case study
in a high-frequency flood area in central Vietnam. The newly
constructed model is a Bayesian framework that combines
GMM and RBFDA for spatial prediction of flooding. A GIS
database has been established to train and test the BayG-
mmKda method. The training phase of BayGmmKda con-
sists of two steps: (i) discriminant analysis with RBFDA in
which a latent factor is generated and (ii) density estimation
using GMM. After the training phase, the Bayesian frame-
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work is employed to compute the posterior probability. The
posterior probability was then used as flood susceptibility in-
dex. Furthermore, a MATLAB program with GUI has been
developed to ease the implementation of the BayGmmKda
model in flood vulnerability assessment.

It is noted that in this study, the GMM training is per-
formed with two methods: the EM algorithm and the unsu-
pervised learning approach. Furthermore, a repeated subsam-
pling process with 30 experimental runs is carried out to eval-
uate the model prediction outcome. The subsampling process
verified by statistical test confirms that the GMM method
trained by the unsupervised learning approach has attained a
better prediction accuracy compared with the EM algorithm.
Therefore, this method of GMM learning is strongly recom-
mended for other studies in the same field.

Furthermore, the experiments demonstrate that the latent
factor created by RBFDA is really helpful in boosting the
classification accuracy of the BayGmmKda model. This me-
lioration in accuracy of the BayGmmKda stems from its in-
tegrated learning structure. As described earlier, the classi-
fication task is performed by a hybridization of discrimina-
tion analysis and a Bayesian framework. The Bayesian model
carried out the classification task by consideration of the pat-
terns in the original dataset and an additional factor produced
from the discrimination analysis. As result, the performance
of the BayGmmKda model is better than those obtained from
the three benchmarks (SVM, ANFIS, and BayGmm).

The main limitation in this work is that the BayGmmKda
is a data-driven tool; therefore, field works and GIS-based
geoenvironmental data are necessary for the model construc-
tion phase. This data collection and analysis can be time-
consuming. In addition, the grid search procedure is used for
hyper-parameter setting in the BayGmmKda model requires
a high computational cost, especially for large-scale datasets.
Furthermore, the outcome of this grid search procedure may
not be optimal; therefore, more advanced model selection ap-
proaches, i.e., metaheuristic optimization algorithms, could
be utilized to further improve the model accuracy.

Despite such limitations, the proposed BayGmmKda
model, featured by its high predictive accuracy and the ca-
pability of delivering probabilistic outputs, is a promising
alternative for flood susceptibility prediction. Future exten-
sions of this research may include the model application in
flood prediction for other study areas, investigations of other
flood-influencing factors (i.e., streamflow and antecedent soil
moisture which may be relevant for flood analysis) and im-
proving the current model with other novel soft computing
methods, i.e., feature selection, pattern classification, and
dimension reduction to alleviate the aforementioned draw-
backs as well as to enhance the model performance.

Code and data availability. The MATLAB code of the BayG-
mmKda model is given in the Supplement.

The dataset used in this research is given in the Supplement.

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-3391-2017-
supplement.
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