Articles | Volume 10, issue 1
https://doi.org/10.5194/gmd-10-255-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-10-255-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An ice sheet model validation framework for the Greenland ice sheet
Fluid Dynamics and Solid Mechanics Group, Los Alamos National
Laboratory, MS B216, Los Alamos, NM 87545, USA
Matthew J. Hoffman
Fluid Dynamics and Solid Mechanics Group, Los Alamos National
Laboratory, MS B216, Los Alamos, NM 87545, USA
Jennifer A. Bonin
College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
Ian M. Howat
School of Earth Sciences and Byrd Polar Research Center, The Ohio State University, Columbus, OH 43210, USA
Thomas Neumann
Cryospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Jack Saba
Cryospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Science, Systems, and Applications, Inc., Lanham, MD 20706, USA
Irina Tezaur
Extreme Scale Data Science and Analytics Department, Sandia National Laboratories, P.O. Box 969, MS 9159, Livermore, CA 94551, USA
Jeffrey Guerber
Cryospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Sigma Space Corp., Lanham, MD 20706, USA
Don P. Chambers
College of Marine Science, University of South Florida, St. Petersburg, FL 33701, USA
Katherine J. Evans
Computational Earth Sciences Group, Oak Ridge National Laboratory, MS 6301, Oak Ridge, TN 37831, USA
Joseph H. Kennedy
Computational Earth Sciences Group, Oak Ridge National Laboratory, MS 6301, Oak Ridge, TN 37831, USA
Jan Lenaerts
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
William H. Lipscomb
Fluid Dynamics and Solid Mechanics Group, Los Alamos National
Laboratory, MS B216, Los Alamos, NM 87545, USA
Mauro Perego
Computational Mathematics Department, Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185, USA
Andrew G. Salinger
Computational Mathematics Department, Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185, USA
Raymond S. Tuminaro
Computational Mathematics Department, Sandia National Laboratories, P.O. Box 5800, MS 1320, Albuquerque, NM 87185, USA
Michiel R. van den Broeke
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
Sophie M. J. Nowicki
Cryospheric Sciences, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Viewed
Total article views: 6,632 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 May 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,362 | 1,528 | 1,742 | 6,632 | 200 | 217 |
- HTML: 3,362
- PDF: 1,528
- XML: 1,742
- Total: 6,632
- BibTeX: 200
- EndNote: 217
Total article views: 5,789 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 17 Jan 2017)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
3,100 | 950 | 1,739 | 5,789 | 191 | 212 |
- HTML: 3,100
- PDF: 950
- XML: 1,739
- Total: 5,789
- BibTeX: 191
- EndNote: 212
Total article views: 843 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 23 May 2016)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
262 | 578 | 3 | 843 | 9 | 5 |
- HTML: 262
- PDF: 578
- XML: 3
- Total: 843
- BibTeX: 9
- EndNote: 5
Cited
15 citations as recorded by crossref.
- Contrasting Hydrological Controls on Bed Properties During the Acceleration of Pine Island Glacier, West Antarctica M. Bougamont et al. 10.1029/2018JF004707
- Application of first arrival seismic tomography in a glaciated basin: implications for paleo-ice stream development N. Zaremba et al. 10.1017/jog.2022.72
- An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System J. Fyke et al. 10.1029/2018RG000600
- Recent Progress in Greenland Ice Sheet Modelling H. Goelzer et al. 10.1007/s40641-017-0073-y
- Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise T. Moon et al. 10.1007/s40641-018-0107-0
- Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves C. Schannwell et al. 10.5194/tc-12-2307-2018
- ALPS: A Unified Framework for Modeling Time Series of Land Ice Changes P. Shekhar et al. 10.1109/TGRS.2020.3027190
- LIVVkit 2.1: automated and extensible ice sheet model validation K. Evans et al. 10.5194/gmd-12-1067-2019
- Greenland Ice Sheet Surface Topography and Drainage Structure Controlled by the Transfer of Basal Variability Á. Ignéczi et al. 10.3389/feart.2018.00101
- Validating ensemble historical simulations of Upernavik Isstrøm (1985–2019) using observations of surface velocity and elevation E. Jager et al. 10.1017/jog.2024.10
- Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison H. Goelzer et al. 10.5194/tc-12-1433-2018
- The land ice contribution to sea level during the satellite era J. Bamber et al. 10.1088/1748-9326/aac2f0
- Response of Surface Topography to Basal Variability Along Glacial Flowlines F. Ng et al. 10.1029/2017JF004555
- A new image mosaic of Greenland using Landsat-8 OLI images Z. Chen et al. 10.1016/j.scib.2020.01.014
- GHub: Building a glaciology gateway to unify a community J. Sperhac et al. 10.1002/cpe.6130
15 citations as recorded by crossref.
- Contrasting Hydrological Controls on Bed Properties During the Acceleration of Pine Island Glacier, West Antarctica M. Bougamont et al. 10.1029/2018JF004707
- Application of first arrival seismic tomography in a glaciated basin: implications for paleo-ice stream development N. Zaremba et al. 10.1017/jog.2022.72
- An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System J. Fyke et al. 10.1029/2018RG000600
- Recent Progress in Greenland Ice Sheet Modelling H. Goelzer et al. 10.1007/s40641-017-0073-y
- Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise T. Moon et al. 10.1007/s40641-018-0107-0
- Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves C. Schannwell et al. 10.5194/tc-12-2307-2018
- ALPS: A Unified Framework for Modeling Time Series of Land Ice Changes P. Shekhar et al. 10.1109/TGRS.2020.3027190
- LIVVkit 2.1: automated and extensible ice sheet model validation K. Evans et al. 10.5194/gmd-12-1067-2019
- Greenland Ice Sheet Surface Topography and Drainage Structure Controlled by the Transfer of Basal Variability Á. Ignéczi et al. 10.3389/feart.2018.00101
- Validating ensemble historical simulations of Upernavik Isstrøm (1985–2019) using observations of surface velocity and elevation E. Jager et al. 10.1017/jog.2024.10
- Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison H. Goelzer et al. 10.5194/tc-12-1433-2018
- The land ice contribution to sea level during the satellite era J. Bamber et al. 10.1088/1748-9326/aac2f0
- Response of Surface Topography to Basal Variability Along Glacial Flowlines F. Ng et al. 10.1029/2017JF004555
- A new image mosaic of Greenland using Landsat-8 OLI images Z. Chen et al. 10.1016/j.scib.2020.01.014
- GHub: Building a glaciology gateway to unify a community J. Sperhac et al. 10.1002/cpe.6130
Latest update: 18 Jan 2025
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and...