Articles | Volume 10, issue 5
https://doi.org/10.5194/gmd-10-1945-2017
https://doi.org/10.5194/gmd-10-1945-2017
Model evaluation paper
 | 
17 May 2017
Model evaluation paper |  | 17 May 2017

A non-linear Granger-causality framework to investigate climate–vegetation dynamics

Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Christina Papagiannopoulou on behalf of the Authors (20 Mar 2017)  Author's response   Manuscript 
ED: Publish as is (29 Mar 2017) by David Lawrence
AR by Christina Papagiannopoulou on behalf of the Authors (05 Apr 2017)
Download
Short summary
Global satellite observations provide a means to unravel the influence of climate on vegetation. Common statistical methods used to study the relationships between climate and vegetation are often too simplistic to capture the complexity of these relationships. Here, we present a novel causality framework that includes data fusion from various databases, time series decomposition, and machine learning techniques. Results highlight the highly non-linear nature of climate–vegetation interactions.