^{1}

^{2}

Matrix multiplication of two sparse matrices is a fundamental operation in linear Bayesian inverse problems for computing covariance matrices of observations and <i>a posteriori</i> uncertainties. Applications of sparse-sparse matrix multiplication algorithms for specific use-cases in such inverse problems remain unexplored. Here we present a hybrid-parallel sparse-sparse matrix multiplication approach that is more efficient by a third in terms of execution time and operation count relative to standard sparse matrix multiplication algorithms available in most libraries. Two modifications of this hybrid-parallel algorithm are also proposed for the types of operations typical of atmospheric inverse problems, which further reduce the cost of sparse matrix multiplication by yielding only upper triangular and/or dense matrices.