Preprints
https://doi.org/10.5194/gmdd-7-6997-2014
https://doi.org/10.5194/gmdd-7-6997-2014
Submitted as: methods for assessment of models
 | 
22 Oct 2014
Submitted as: methods for assessment of models |  | 22 Oct 2014
Status: this preprint was under review for the journal GMD but the revision was not accepted.

A user-friendly forest model with a multiplicative mathematical structure: a Bayesian approach to calibration

M. Bagnara, M. Van Oijen, D. Cameron, D. Gianelle, F. Magnani, and M. Sottocornola

Abstract. Forest models are being increasingly used to study ecosystem functioning, through the reproduction of carbon fluxes and productivity in very different forests all over the world. Over the last two decades, the need for simple and "easy to use" models for practical applications, characterized by few parameters and equations, has become clear, and some have been developed for this purpose. These models aim to represent the main drivers underlying forest ecosystem processes while being applicable to the widest possible range of forest ecosystems. Recently, it has also become clear that model performance should not be assessed only in terms of accuracy of estimations and predictions, but also in terms of estimates of model uncertainties. Therefore, the Bayesian approach has increasingly been applied to calibrate forest models, with the aim of estimating the uncertainty of their results, and of comparing their performances.

Some forest models, considered to be user-friendly, rely on a multiplicative or quasi-multiplicative mathematical structure, which is known to cause problems during the calibration process, mainly due to high correlations between parameters. In a Bayesian framework using a Markov Chain Monte Carlo sampling this is likely to impair the reaching of a proper convergence of the chains and the sampling from the correct posterior distribution.

Here we show two methods to reach proper convergence when using a forest model with a multiplicative structure, applying different algorithms with different number of iterations during the Markov Chain Monte Carlo or a two-steps calibration. The results showed that recently proposed algorithms for adaptive calibration do not confer a clear advantage over the Metropolis–Hastings Random Walk algorithm for the forest model used here. Moreover, the calibration remains time consuming and mathematically difficult, so advantages of using a fast and user-friendly model can be lost due to the calibration process that is needed to obtain reliable results.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
M. Bagnara, M. Van Oijen, D. Cameron, D. Gianelle, F. Magnani, and M. Sottocornola
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
M. Bagnara, M. Van Oijen, D. Cameron, D. Gianelle, F. Magnani, and M. Sottocornola
M. Bagnara, M. Van Oijen, D. Cameron, D. Gianelle, F. Magnani, and M. Sottocornola

Viewed

Total article views: 2,927 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,429 1,302 196 2,927 109 134
  • HTML: 1,429
  • PDF: 1,302
  • XML: 196
  • Total: 2,927
  • BibTeX: 109
  • EndNote: 134
Views and downloads (calculated since 22 Oct 2014)
Cumulative views and downloads (calculated since 22 Oct 2014)

Cited

Saved

Latest update: 21 Nov 2024