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Abstract

Forest models are being increasingly used to study ecosystem functioning, through
the reproduction of carbon fluxes and productivity in very different forests all over the
world. Over the last two decades, the need for simple and “easy to use” models for
practical applications, characterized by few parameters and equations, has become5

clear, and some have been developed for this purpose. These models aim to represent
the main drivers underlying forest ecosystem processes while being applicable to the
widest possible range of forest ecosystems. Recently, it has also become clear that
model performance should not be assessed only in terms of accuracy of estimations
and predictions, but also in terms of estimates of model uncertainties. Therefore, the10

Bayesian approach has increasingly been applied to calibrate forest models, with the
aim of estimating the uncertainty of their results, and of comparing their performances.

Some forest models, considered to be user-friendly, rely on a multiplicative or quasi-
multiplicative mathematical structure, which is known to cause problems during the cal-
ibration process, mainly due to high correlations between parameters. In a Bayesian15

framework using a Markov Chain Monte Carlo sampling this is likely to impair the reach-
ing of a proper convergence of the chains and the sampling from the correct posterior
distribution.

Here we show two methods to reach proper convergence when using a forest model
with a multiplicative structure, applying different algorithms with different number of it-20

erations during the Markov Chain Monte Carlo or a two-steps calibration. The results
showed that recently proposed algorithms for adaptive calibration do not confer a clear
advantage over the Metropolis–Hastings Random Walk algorithm for the forest model
used here. Moreover, the calibration remains time consuming and mathematically dif-
ficult, so advantages of using a fast and user-friendly model can be lost due to the25

calibration process that is needed to obtain reliable results.

6998

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6997/2014/gmdd-7-6997-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6997/2014/gmdd-7-6997-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6997–7031, 2014

Bayesian calibration
of a multiplicative

forest model

M. Bagnara et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 Introduction

Gross Primary Production (GPP) is a key component of the carbon balance. There-
fore, it is the central output of many forest ecosystem models (Mäkelä et al., 2000;
Tjiputra et al., 2013; De Weirdt et al., 2012), and is being increasingly targeted by re-
mote sensing applications as a proxy to predict global carbon fluxes and plant light-use5

efficiency at large spatial scales (Still et al., 2004; Wisskirchen et al., 2013; Zhang
and Kondragunta, 2006). It can also be estimated by the Eddy-covariance technique:
this micrometeorological method computes the net CO2 turbulent flux between a given
ecosystem and the atmosphere from the covariance between the fluctuations of ver-
tical wind velocity and CO2 concentrations, averaged at a half-hour time scale. This10

can be used to estimate both ecosystem respiration (Re) and GPP. Currently, a global
network of more than 500 EC stations exist worldwide to continuously monitor the CO2
and energy exchange between ecosystems and the atmosphere, whose homogeneity
is ensured by similar standardized procedures (Baldocchi, 2008). Despite extensive
efforts and several techniques tested, GPP quantification remains challenging in most15

ecosystems given its dependence on several meteorological, environmental and inter-
nal drivers at several time scales.

Most of the models of forest growth and biogeochemical cycles are detailed, multi-
variable models that need much environmental information and careful parameterisa-
tion before they can be run (Landsberg and Waring, 1997). To make them suitable for20

a wider range of purposes and accessible to a wider range of users, a process of sim-
plification started in the 90’s (White and Running, 1994; Landsberg and Waring, 1997)
with the aim of developing models that could be of use in applied forest management.

One step in this direction was represented by the creation of hybrid models (e.g.
FORCYTE-11, Kimmins, 1986), combining the predictive power of process-based mod-25

els with the short-term believability of mensuration-based models (Kimmins et al.,
1999; Medlyn et al., 2003). Unlike full process-based models, hybrid models are based
on the principle that only the processes that are expected to change would be included
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in the modelling effort, reducing the number of processes taken into account and re-
sulting in a simplification of the overall model structure (Kimmins et al., 2008).

A widely used group of simple models for GPP is based on the concept of Light Use
Efficiency (LUE), defined as the ratio of GPP to Absorbed Photosynthetically Active
Radiation (APAR). They mainly rely on simplified physiological processes and empiri-5

cal parameters, require little information to be run, the computations are usually fast,
and their mathematical structure is often quasi- or totally multiplicative. These models
assume that vegetation has a potential LUE, which can be described as the ability of
plants to use light for photosynthesis in absence of limiting factors, decreased by modi-
fying factors that account for suboptimal conditions for photosynthesis (Landsberg and10

Waring, 1997; McMurtrie et al., 1994).
Some examples of these models are 3PG (Landsberg and Waring, 1997), C-Fix

(Veroustraete et al., 1994), the model developed by Horn and Schulz (2011b), and
Prelued (Mäkelä et al., 2008a).

Despite relying on a multiplicative mathematical structure and on several empirical15

parameters, of which little is known in the literature, Prelued has been successfully ap-
plied to several ecosystems all across the world (Bagnara et al., 2014; Mäkelä et al.,
2008a; Peltoniemi et al., 2012). Compared to the majority of the LUE-based models
that work at monthly or annual time scale, relying on a linear relationship between
GPP and APAR and on a parabolic effect of temperature, the Prelued model calculates20

GPP at a daily time scale, basing the calculations on a nonlinear relationship between
APAR and GPP (Medlyn et al., 2003; Turner et al., 2003), a saturating effect of aver-
age daily temperature (which simulates the ecosystem “acclimation” to temperature,
Mäkelä et al., 2004), and daily meteorological and environmental variables. The im-
portance of these environmental variables has been recently highlighted by McCallum25

et al. (2013), applying the Prelued model at four Eddy-Covariance sites in Russia: this
clearly demonstrates the improved fit of the model when considering both temperature
acclimation and nonlinearity in response to APAR, especially in temperature-controlled
ecosystems.
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The Bayesian approach to model calibration has become more and more popular
in the last few years to obtain insights on both model predictions and uncertainties.
The main characteristic of a Bayesian calibration is that it quantifies model inputs and
outputs in the form of probability distributions, and applies the rules of probability theory
to update the distributions when new data are obtained (van Oijen et al., 2005; Sivia,5

1996). This approach has been widely used in the past in different fields, and recently
it has been applied to different kind of ecosystem models, focusing on both crop (Zhu
et al., 2014) and forest (van Oijen et al., 2005, 2011, 2013; Svensson et al., 2008;
Chevallier et al., 2006). Even so, the application of the bayesian method to LUE-based
models is not as common as its application to process-based models, with a very few10

studies heading in this direction (Bagnara et al., 2014; Still et al., 2004; Xenakis et al.,
2008).

Implementations of Bayesian calibration rely mainly on Markov Chain Monte Carlo
(MCMC) algorithms for sampling the parameter space to obtain posterior probability
distributions for the model parameters. The efficiency of the MCMC technique is highly15

dependent on the model structure. The high correlations between parameters that are
induced by a multiplicative model structure generally make the convergence of the
MCMC more difficult, impairing the reliability of the results of the calibration. Different
methods have been implemented to avoid or reduce such problems: the use of very
long chains (Gilks et al., 1996), model re-parameterization to avoid strong correlations20

(Buzzi-Ferraris and Manenti, 2010; Gilks et al., 1996), and the use of more efficient
algorithms (ter Braak, 2006; Gilks et al., 1996). In this study, three algorithms charac-
terized by increasing complexity and efficiency were applied: the Metropolis–Hastings
Random Walk (MHRW), the Adaptive Metropolis (AM), and the Differential Evolution
Markov Chain (DEMC).25

The Metropolis–Hastings random walk (MHRW) (Robert and Casella, 1999) algo-
rithm produces a walk through the parameter space such that the collection of visited
points forms the desired sample from the posterior distribution, discarding some ini-
tial values (van Oijen et al., 2005). At each iteration of the algorithm, a new candidate
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parameter vector is proposed stochastically, i.e. the jump from the current point to the
proposed next one follows a probability distribution. The most commonly used proposal
distribution is the multivariate Gaussian. Whether the proposal is accepted, depends on
the prior probabilities and likelihoods of the current and proposed parameter vectors. In
the MHRW, the proposal distribution itself does not change, so average proposed jump5

directions and distances remain the same throughout the random walk. This is different
in the next two MCMC algorithms. The adaptive Metropolis algorithm (AM) is a modifi-
cation of the MHRW. The key attribute of the AM algorithm is the continuous adaptation
of its proposal distribution. The adaptation consists of gradual convergence of the co-
variance matrix of the proposal distribution to the covariance matrix of the parameters10

visited so far in the chain (Haario et al., 2001; Smith and Marshall, 2008). The differ-
ential evolution Markov chain algorithm (DEMC) is formed by combining the differential
evolution algorithm of Storn and Price (1997), designed for global optimization in real
parameter spaces, with MCMC sampling, utilizing standard Metropolis principles. The
result is a population MCMC algorithm, where multiple chains are run in parallel and15

allowed to learn from each other. This combination intends to overcome the difficulties
common to MCMC methods of choosing an appropriate scale and orientation (respec-
tively the size of each jump in the MCMC sampling and its direction in the parameter
space) for the proposal distribution, while also addressing issues of computational effi-
ciency related to the time to reach convergence (ter Braak, 2006; Smith and Marshall,20

2008).
This work aims at testing different procedures that could be successfully applied to

the variety of forest models with similar structure to reach proper convergence during
the MCMC sampling. We applied a Bayesian calibration with different algorithms and
number of iterations, as well as reparameterization and multiple steps calibration, to25

the Prelued model, employed as a case study, using one year of daily GPP data from
an Eddy-Covariance (EC) tower in the Italian Alps.
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2 Materials and methods

2.1 Model formulation

The model used as a case study is a modified version of a LUE-type model of daily
photosynthetic production of the canopy (Mäkelä et al., 2008a):

GPPj = βAPARj

∏
i

Fi j (1)5

where GPPj is canopy Gross Primary Production (g C m−2) during day j , β is potential

Light Use Efficiency (g C mol−1), APARj is Absorbed Photosynthetically Active Radia-

tion (mol m−2) during day j , and Fi j ∈ [0,1] are modifying factors accounting for subop-
timal conditions on day j . The actual LUE of the canopy on day j is the product of β10

and the current values of the modifiers.
To account for the nonlinearity in the response to APAR, a light modifier FL was de-

fined so as to yield the rectangular hyperbola when multiplied with the linear response
included in the LUE model:

FLj = 1/(γAPARj +1) (2)15

where γ (m2 mol−1) is an empirical parameter. The effect of temperature on daily GPP
was modelled using the concept of state of acclimation, Sj (◦C) (Mäkelä et al., 2004),
a piecewise linear function of Xj (◦C) calculated from the mean daily ambient tempera-
ture, Tj (◦C), using a first-order dynamic delay model:20

Xj = Xj−1 + (1/τ)(Tj −Xj−1), X1 = T1 (3)

Sj = max{Xj −X0,0} (4)

where τ (days) is the time constant of the delay process and X0 (◦C) is a threshold
value of the delayed temperature. The modifying function FS is defined as25

FSj = min{Sj/Smax,1} (5)
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where the empirical parameter Smax (◦C) determines the value of Sj at which the tem-
perature modifier attains its saturating level.

Following Landsberg and Waring (1997) the Vapour Pressure Deficit (VPD) modifier
was defined as

FDj = eκVPDj (6)5

where VPDj (kPa) is VPD in day j and κ (kPa−1) is an empirical parameter assuming
typically negative values.

2.2 Data

The data for the Italian Eddy Covariance site of Lavarone for the year 2004 has been10

downloaded from the European Fluxes Database Cluster (www.europe-fluxdata.eu).
Lavarone is a ca. 130 years old alpine coniferous forest, dominated by Silver fir (Abies
alba Mill.) and Norway spruce (Picea abies (L.) Karst.), with minor presence of Eu-
ropean beech (Fagus sylvatica L.) and located at 1350 m a.s.l. in the Trento province,
western Italian Alps. The site characteristics of Lavarone are described in detail in15

Rodeghiero and Cescatti (2005).
Daily air temperature, relative humidity (RH) and PAR were used as input data.

Daily VPD was calculated from RH and air temperature following Allen et al. (1998),
while daily GPP was used to calibrate the model. Daily APAR was calculated following
Mäkelä et al. (2008a), using Normalized Difference Vegetation Index (NDVI) data as20

a proxy for fAPAR: for that purpose, NDVI data with 0.25 km spatial grid and 16 days
time-step were downloaded from the MODIS repository (http://daac.ornl.gov/cgi-bin/
MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl).

Missing data for either a weather variable or GPP resulted in a missing outcome of
the model for that day j . Therefore, 292 data points were actually used to calibrate the25

model.
The Bayesian calibration requires an estimate of the uncertainties around the data

used during the calibration (van Oijen et al., 2005). Uncertainties around GPPj were
7004
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calculated as follows:

GPPj = GPPj ± yj (7)

where yj is the maximum of 1 g C m−2 and a random value in the interval [1,0.3×GPPj ].

The lower bound of 1 g C m−2 is necessary to ensure that low values of GPPj would5

not get an overwhelming weight during the calibration procedure.

2.3 Bayesian calibration

The prior parameter distributions were set based on the information made available by
(Mäkelä et al., 2008a) and Peltoniemi et al. (2012). Since the parameter distributions
were partly unknown, and since many parameters are empirical and without physiolog-10

ical meaning, we set the prior distributions as uniform distributions (i.e. any value has
the same probability to occur) and wide enough to cover a very wide range of possible
values (Table 1).

To investigate in detail the model behavior during a Bayesian calibration and to tackle
the issues related to slow convergence, we tested four different procedures:15

1. Single-step calibration: for each of the three algorithms applied (MHRW, AM,
DEMC) different simulations with an increasing number of iterations were per-
formed to test the efficiency of each algorithm in reaching convergence. Three
simulations were run, with 104, 105 and 106 iterations in total for each algorithm.
An initial burn-in phase was set to 30 % of the total number of iterations for all the20

algorithms. For the DEMC algorithm, 100 chains were considered, making the
number of iterations per chain respectively 102, 103 and 104.

2. Model comparison: we ran a second LUE-based model with slightly different struc-
ture, on the same data and with the same calibration settings. The model chosen
for this purpose was the model developed by Horn and Schulz (2011a) as de-25

scribed in Horn and Schulz (2011b). An initial burn-in phase was set to 30 % of
7005
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the total number of iterations for all the algorithms. For the DEMC algorithm, 100
chains were considered, making the number of iterations per chain respectively
102, 103 and 104. The main difference in the mathematical structure between the
two models is that while in Prelued GPP is calculated as a product of potential
LUE, APAR, and modifiers (Eq. 1), in Horn and Schulz (2011b) GPP is calculated5

as:

GPPj = LUEAPARj [pFTj + (1−p)FWj ] (8)

with GPPj (g C m−2) denoting the gross flux of carbon uptake in day j , LUE

(g C MJ−1) being the maximum attained Light Use Efficiency, APARj (MJ m−2) the
Absorbed Photosynthetically Active Radiation in day j , and p a weighting factor10

for the modifiers FT and FW.

FT is a sigmoidal peak function defined as:

FT = 4e−(Ts−Topt)/kT/(1+e−(Ts−Topt)/kT )2 (9)

where Ts is the soil temperature (◦C), Topt (◦C) is the temperature at which the15

light use efficiency is maximum, and kT (◦C−1) is the rate of change from the
lower level of FT to its maximum.

FW is defined as following sigmoidal function:

FW = 1/(1+ekW (W−W i )) (10)
20

where W is a moisture surrogate (in our case the Soil Water Content (m3 m−3)),
kW is the constant rate of change between lower and upper level (set to −13.1
following Horn and Schulz, 2011b) and W i is the inflection point with units de-
pending on the choice of W.

Following Jarvis et al. (2004), a lag function was applied to Ts:25

ZFj = (1−α)Tsj +αZFj−1 (11)
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where α (–) is the lag parameter. Equation (11) is only applied to Ts, considered
the dominant driver of the vegetation stands; this main driver is expected to trigger
the start and end of dormant periods after which the vegetation has to regenerate
and redevelop green tissue (Horn and Schulz, 2011a).

FT and FW are scaled between 0 and 1 and describe the dependence of the5

Light Use Efficiency on the soil temperature and a moisture surrogate. Overall,
the structure of this latter model is less multiplicative than Prelued, which should
make its calibration easier. The prior distributions for this model have been derived
from Table 2 in Horn and Schulz (2011a), using the minimum and maximum value
for each parameter as boundaries and keeping the distributions uniform.10

3. Reparameterization: we reformulated four parameters of Prelued out of six,
changing their meaning and the model formulation accordingly:

β′ = β/γ (12)

γ′ = 1/γ (13)

Smax
′ = 1/Smax (14)15

X0
′ = X0/Smax (15)

Given the purpose of this approach was reaching faster the convergence only two
calibrations instead of three (104 and 105 iterations) were performed.

4. Two-steps calibration: in this procedure, the posterior correlations between pa-20

rameters found in the first step were used to reduce the number of parameters
involved in the second step. If two parameters were strongly correlated, the coeffi-
cients of the linear regression between them were used to estimate one parameter
as a function of the second, reducing the number of calibrated parameters. These
coefficients were calculated for each number of iterations, and used in a second25

calibration with the same length: the coefficients calculated after the 104 iterations
calibration were used for a second 104 iterations calibration with reduced number
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of parameters, and the same approach was used for the 105 iterations calibration.
Since convergence was reached after the first step for the longest calibration, only
two second steps were run (104 and 105 iterations).

2.4 Measure of convergence

The reaching of the convergence region was visually assessed, along with the differ-5

ent behavior of the Markov Chain between different numbers of iterations and their
similar behavior between algorithms. In order to obtain a quantitative measure of con-
vergence of the chains to the posterior distribution, the last 50 % of the longest chain
for each algorithm were split in half and the means and variances of the two halves
were compared. For the DEMC algorithm, only the chain with maximum log-likelihood10

was chosen for this purpose.

3 Results

3.1 Bayesian calibration

3.1.1 Single-step calibration

For all the three algorithms of increasing complexity used in this study (MHRW, AM,15

DEMC), the Markov Chain Monte Carlo did not reach convergence at 104 iterations,
approached convergence at 105 iterations, and reached good convergence at 106 it-
erations (Fig. 1). The same pattern emerged from the analysis of the posterior distri-
butions: for many parameters, the posterior distributions were bimodal, shifted, or as
broad as the priors at 104 iterations, while becoming leptokurtic at 106 iterations for20

all the parameters. With the latter number of iterations, the posterior distribution thus
narrowed the parameter space, converging in the same region (Fig. 2). The parameter
sets with best log-likelihood (Table 2) and the posterior correlation coefficients between
parameters (Table 3) were very similar between algorithms with only few exceptions.
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This confirmed the convergence on the same joint posterior distribution and not only
on the marginal distributions for each parameter. The strongest correlation was found
for the threshold value of the delayed temperature X0 and the empirical parameter Smax
(correlation coefficient varies from −0.923 to −0.928 depending on the algorithm), both
involved in the response to temperature. Strong correlation existed also between the5

Potential LUE, β, and the empirical parameter γ (correlation coefficient varies from
0.89 to 0.91 depending on the algorithm), which were both involved in the response
to APAR. Concerning the log-likelihood values of the best parameter set, the MHRW
algorithm showed the best result compared to the AM and the DEMC (Table 2).

3.1.2 Model comparison10

The application of the less multiplicative LUE-based model developed by Horn and
Schulz (2011b) to the same dataset did not show better results compared to Prelued,
in terms of reaching proper convergence, even at a high number of iterations. For all
the three algorithms of increasing complexity used in this study (MHRW, AM, DEMC),
the Markov Chain Monte Carlo did not reach convergence at 104 and 105 iterations,15

and reached convergence at 106 iterations for some parameters only (Fig. 3). The
analysis of the posterior distributions showed the same trends as in Prelued: for many
parameters, the posterior distributions were bimodal, shifted, or as broad as the priors
at 104 iterations, while narrowing the parameter space at 106 iterations and converging
in the same region (Fig. 4).20

3.1.3 Reparameterization

The alternative formulation proposed to overcome the convergence problems with the
calibration of Prelued did not result in faster convergence. For all the three algorithms
of increasing complexity used in this study (MHRW, AM, DEMC), the Markov Chain
Monte Carlo did not reach convergence at 104 and 105 iterations (Fig. 5). The analysis25

of the posterior distributions showed a situation far from convergence in every case:
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for many parameters, the posterior distributions were bimodal, shifted, or as broad as
the priors at both 104 and 105 iterations, sometimes exploring different regions of the
parameter space (Fig. 6).

3.1.4 Two-steps calibration

The posterior correlations found in the first step of calibration described in paragraph5

3.1 (parameters β and γ, and parameters τ and Smax) were used to reduce the number
of parameters estimated in the second step. In particular, γ was estimated as a linear
function of β, and Smax as a linear function of τ. For all the three algorithms of in-
creasing complexity used in this study (MHRW, AM, DEMC), the Markov Chain Monte
Carlo did not reach convergence at 104 iterations, but reached good convergence at10

105 iterations for all the parameters (Fig. 7). The analysis of the posterior distributions
showed well defined distributions at both 104 and 105 iterations, and in the latter case
they converged in the same region of the parameter space (Fig. 8).

3.2 Quantitative measure of convergence

For the single-step calibration with 106 iterations the means of the first- and second-15

halves of the MCMC were within 1.5 % of each other except for parameter τ (time
constant of the delay process in response to temperature) using the DEMC algorithm
(2.9 %). The variances of the first- and second-halves were within 15 % except for pa-
rameter X0 (i.e., the threshold value of the delayed temperature) using the DEMC al-
gorithm (23.2 %) (Table 4). This proves that the longest chains for each parameter and20

algorithm are converging on the same region of parameter space (Fig. 9).

4 Discussion

In disagreement with the expectation, given their increasing complexity and efficiency,
all three MCMC-methods tested in this study were similarly effective. Although this
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similarity in behavior between algorithms was a surprising result, the main output of
this study was that a very high number of iterations was required for each of the three
calibration algorithms to stabilize in the convergence region. This is especially true
considering the simplicity of the Prelued model. This 6-parameters empirical model
required 106 iterations to reach convergence, whereas a 39-parameter mechanistic5

forest model was calibrated with chains of length 105 (van Oijen et al., 2005), and 105

iterations were enough to allow proper convergence for 4 process-based models with
higher complexity than Prelued (van Oijen et al., 2011). Despite the high number of
iterations required, all three algorithms reached convergence since they all explored
the same parameter space (Fig. 3). This demonstrates that the three algorithms were10

not attracted in different regions of the parameter space, which excludes the risk of
undiagnosed slow convergence (Gilks et al., 1996).

The LUE model by Horn and Schulz (2011b) showed the same convergence prob-
lems as Prelued when calibrated with a Bayesian approach, despite a less multiplica-
tive structure (Fig. 3). Therefore, the comparison of these two models suggested that15

the multiplicative structure of Prelued was probably the main factor responsible for
the difficulties in the calibration, but is unlikely to be the only one. It should also be
considered that even if LUE-type models are largely empirical, they usually rely on
parameters with physiological meaning. Their analysis thus gives insights about the
ecosystem characteristics and behavior, and allows for comparison between different20

models. For example, the well-known and widely applied 3PG model (Landsberg and
Waring, 1997) has the same mathematical properties of Prelued, even if not so ex-
treme. Therefore, beside the strong multiplicative mathematical structure, the problems
in calibrating Prelued were likely due to the indefinite nature of the empirical param-
eters, neither ecological nor physiological. This renders the prior distributions difficult25

to specify and forces the MCMC to investigate a broad parameter space, delaying the
identification of the convergence region.

The reparameterization procedure applied to Prelued in order to reach faster con-
vergence proved to be ineffective (Fig. 5). This result should not be surprising given
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the simple mathematical formulation of the model, which does not allow the users to
considerably change the parameter meaning and the model structure. Even if our ap-
proach allowed to reformulate four parameters out of six, this change in the parameters
formulation did not lead to a substantial change in the overall model formulation, and
this is likely to be the main reason of the ineffectiveness of this kind of procedure in this5

particular case.
It is not uncommon for data-based modeling exercises to show issues related to equi-

finality: frequently, the optimal parameter set is not uniquely defined. Instead, there may
be many sets of parameters that all fit the data more or less equally well (Franks and
Beven, 1997; Hollinger and Richardson, 2005; Schulz et al., 2001). This usually results10

in a delayed convergence, and can be due to high posterior correlation between pa-
rameters. These correlations could also be due to model overparameterization, which
is known to lead to slow convergence (Rannala, 2002). An alternative solution to the
issue of slow convergence was a two-steps calibration, using the posterior correlations
between parameters resulting from the first step to reduce the number of parame-15

ters calibrated in the second step (thus reducing the dimensionality of the parameter
space): this procedure allowed to reduce the number of parameters estimated, tackling
both the issue of overparameterization and of equifinality, and reaching convergence
with a smaller number of iterations (Fig. 7).

Since it was shown to be the same, the efficiency of the three considered algo-20

rithms should not drive their choice. The MHRW provided the parameter vector with
best log-likelihood, but this did not result in better model performances over all. We
suggest the DEMC algorithm as the best choice in this case study, due to the auto-
matic computation of both the scale and orientation of the MCMC sampling. These
are both user-defined in the MHRW algorithm, while only orientation is internally com-25

puted in the AM leaving scale as a user-defined setting. Since the optimal combination
of scale and orientation is dependent on the prior distributions and on the data, the
user might need several attempts to find it, making the calibration process even more
time-consuming. It is also important to note that, once the optimal settings have been
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decided, the computational effort was the same for all the algorithms, even if other
studies suggest that the DEMC algorithm is slower and requires more computational
power than the others used in this case study (ter Braak, 2006).

5 Conclusions

In this study we compared the performance of three different Markov Chain Monte5

Carlo-based algorithms within a Bayesian framework to calibrate a Light Use Efficiency
model (Prelued). The application of the three different algorithms of increasing com-
plexity (Metropolis–Hastings Random Walk, Adaptive Metropolis, Differential Evolution
Markov Chain) with different number of iterations showed that all three MCMC-methods
were similarly effective in reaching convergence. For all of them a very high number of10

iterations (106) is required for the Markov Chain to stabilize in the convergence region.
This is due to the combination of at least two different factors: a strongly multiplicative
mathematical structure, coupled with empirical parameters with neither ecological nor
physiological meaning and parameters about which little is known in the literature.

An alternative solution to a very high number of iterations was a two-steps calibration,15

using the posterior correlations between parameters resulting from the first step to
reduce the number of parameters calibrated in the second step. This approach reduced
the computational effort necessary to reach proper convergence and was less time
consuming than the previous one.

We suggest the DEMC algorithm as the best choice in this case study, even if its20

efficiency has proven to be similar to the other algorithms used, due to the automatic
computation of both the scale and orientation of the MCMC sampling.
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Table 1. Prior probability distributions for each parameter in the Prelued model.

Parameter Unit Prior min. Prior max.

β g C mol−1 0.0 1.5
γ m2 mol−1 0.0 0.1
κ kPa−1 −10.0 0.0
X0

◦C −100.0 0.0
τ ◦C 0.0 100.0
Smax

◦C 0.0 100.0
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Table 2. Best parameter sets and log-likelihood values for the three MCMC algorithms applied
(single-step calibration of Prelued), compared with the optimized parameter values found by
Mäkelä et al. (2008) in similar ecosystems.

Site Year Dominant species Algorithm Best parameter vector/
Optimized parameter value

Log-likelihood Reference

β γ κ X0 τ Smax

Lavarone 2004 A. alba + P. abies MHRW
AM
DEMC

0.55
0.56
0.56

0.02
0.02
0.02

−0.92
−0.93
−0.93

−7.01
−6.89
−6.60

9.51
9.19
9.52

13.28
12.91
12.21

−117.78
−124.41
−134.14

–

Norunda
Tharandt
Bray

1999
2003
2001

P. abies + P. sylvestris
P. abies
P. pinaster

– 0.49
0.66
0.49

0.002
0.016
0.021

−0.39
−0.70
−0.06

−10.0
−5.0
−1.0

5.0
2.0
2.0

29.0
19.50
19.0

– Mäkelä et al. (2008)
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Table 3. Posterior coefficients of correlation between parameters (single-step calibration of Pre-
lued). Coefficients that differ more than one order of magnitude or have different sign between
algorithms are highlighted in bold text.

Algorithm Parameter β γ κ X0 τ Smax

MHRW
AM
DEMC

β 1
1
1

0.91
0.89
0.896

0.135
0.039
0.156

−0.15
−0.095
−0.106

−0.262
−0.269
−0.257

0.369
0.294
0.291

MHRW
AM
DEMC

γ 0.91
0.89
0.896

1
1
1

0.471
0.417
0.512

−0.13
−0.106
−0.116

−0.226
−0.218
−0.263

0.325
0.272
0.27

MHRW
AM
DEMC

κ 0.135
0.039
0.156

0.471
0.417
0.512

1
1
1

0.006
−0.021
−0.017

0.012
0.067
−0.07

0.072
0.062
0.081

MHRW
AM
DEMC

X0 −0.15
−0.095
−0.106

−0.13
−0.106
−0.116

0.006
−0.021
−0.017

1
1
1

0.434
0.483
0.418

−0.923
−0.928
−0.926

MHRW
AM
DEMC

τ −0.262
−0.269
−0.257

−0.226
−0.218
−0.263

0.012
0.067
−0.07

0.434
0.483
0.418

1
1
1

−0.512
−0.578
−0.529

MHRW
AM
DEMC

Smax 0.369
0.294
0.291

0.325
0.272
0.27

0.072
0.062
0.081

−0.923
−0.928
−0.926

−0.512
−0.578
−0.529

1
1
1
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Table 4. Means and variances of the first and second half of last 50 % of the longest chain for
each algorithm (single-step calibration of Prelued).

Algorithm Parameter Mean of first half Mean of second half Variance of first half Variance of second half

MHRW β 0.55036 0.54845 0.0011 0.00116
γ 0.01799 0.01779 0.00001 0.00001
κ 0.924 0.92421 0.00816 0.00816
X0 6.96082 7.0221 0.54956 0.59826
τ 9.60252 9.60196 1.96344 2.06421

Smax 13.15563 13.24499 1.74995 1.92255

AM β 0.56413 0.56479 0.00105 0.00101
γ 0.01903 0.01898 0.00001 0.00001
κ 0.92784 0.93448 0.00752 0.00758
X0 6.89452 6.90664 0.53949 0.53714
τ 9.18685 9.07216 1.97048 1.82252

Smax 12.93946 12.9531 1.55456 1.57706

DEMC β 0.55799 0.55883 0.00083 0.00076
γ 0.01849 0.0187 0.00001 0.00001
κ 0.92787 0.92596 0.00675 0.00689
X0 6.7482 6.75782 0.45696 0.35082
τ 9.54574 9.26533 1.35935 1.26707

Smax 12.46423 12.52407 1.24835 1.08612

7022

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/6997/2014/gmdd-7-6997-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/6997/2014/gmdd-7-6997-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 6997–7031, 2014

Bayesian calibration
of a multiplicative

forest model

M. Bagnara et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 1. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the single-step calibration of the Prelued
model.
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Figure 2. Posterior probability distributions of parameters for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the single-step calibration of the Prelued
model.
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Figure 3. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011b).
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Figure 4. Posterior probability distributions of parameters for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the model by Horn and Schulz (2011b).
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Figure 5. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the reparameterized Prelued model.
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Figure 6. Posterior probability distributions of parameters for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the reparameterized Prelued model.
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Figure 7. Traceplots of the post burn-in MCMC sampling for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the two-steps calibration of the Prelued
model.
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Figure 8. Posterior probability distributions of parameters for all the applied algorithms (MHRW,
AM, DEMC) with different number of iterations, for the two-steps calibration of the Prelued
model.
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Figure 9. Boxplot of the first and second half of the last 50 % of the longest chain for each
algorithm for the single-step calibration of the Prelued model.
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