Articles | Volume 9, issue 11
https://doi.org/10.5194/gmd-9-4227-2016
https://doi.org/10.5194/gmd-9-4227-2016
Model description paper
 | Highlight paper
 | 
24 Nov 2016
Model description paper | Highlight paper |  | 24 Nov 2016

Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

Bradley O. Christoffersen, Manuel Gloor, Sophie Fauset, Nikolaos M. Fyllas, David R. Galbraith, Timothy R. Baker, Bart Kruijt, Lucy Rowland, Rosie A. Fisher, Oliver J. Binks, Sanna Sevanto, Chonggang Xu, Steven Jansen, Brendan Choat, Maurizio Mencuccini, Nate G. McDowell, and Patrick Meir

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Bradley Christoffersen on behalf of the Authors (07 Oct 2016)  Author's response   Manuscript 
ED: Referee Nomination & Report Request started (11 Oct 2016) by Hisashi Sato
RR by Anonymous Referee #1 (15 Oct 2016)
RR by Anonymous Referee #2 (23 Oct 2016)
ED: Publish as is (01 Nov 2016) by Hisashi Sato
AR by Bradley Christoffersen on behalf of the Authors (04 Nov 2016)
Download
Short summary
We developed a plant hydraulics model for tropical forests based on established plant physiological theory, and parameterized it by conducting a pantropical hydraulic trait survey. We show that a substantial amount of trait diversity can be represented in the model by a reduced set of trait dimensions. The fully parameterized model is able capture tree-level variation in water status and improves simulations of total ecosystem transpiration, showing how to incorporate hydraulic traits in models.