Articles | Volume 9, issue 10
https://doi.org/10.5194/gmd-9-3671-2016
https://doi.org/10.5194/gmd-9-3671-2016
Model evaluation paper
 | 
17 Oct 2016
Model evaluation paper |  | 17 Oct 2016

Computationally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust

Wonbae Jeon, Yunsoo Choi, Peter Percell, Amir Hossein Souri, Chang-Keun Song, Soon-Tae Kim, and Jhoon Kim

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Yunsoo Choi on behalf of the Authors (20 Sep 2016)  Author's response   Manuscript 
ED: Publish subject to technical corrections (26 Sep 2016) by Alex B. Guenther
AR by Yunsoo Choi on behalf of the Authors (27 Sep 2016)  Manuscript 
Download
Short summary
This study suggests a new hybrid Lagrangian–Eulerian modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for an accurate/fast prediction of Asian dust events. The STOPS is a moving nest (Lagrangian approach) between the source and the receptor inside Eulerian model. We run STOPS, instead of running a time-consuming Eulerian model, using constrained PM concentration from remote sensing aerosol optical depth, reflecting real-time dust particles. STOPS is for unexpected events.