Articles | Volume 9, issue 9
https://doi.org/10.5194/gmd-9-3137-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-3137-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of the boundary layer dynamics of the TM5 model over Europe
E. N. Koffi
CORRESPONDING AUTHOR
European Commission Joint Research Centre, Ispra (Va), Italy
P. Bergamaschi
European Commission Joint Research Centre, Ispra (Va), Italy
U. Karstens
Max-Planck-Institute for Biogeochemistry, Jena, Germany
ICOS Carbon Portal, ICOS ERIC at Lund University, Lund, Sweden
SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, the Netherlands
MAQ, Wageningen University and Research Centre, Wageningen, the Netherlands
A. Segers
Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, the Netherlands
M. Schmidt
Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
Institut für Umweltphysik, Heidelberg University, Heidelberg, Germany
A. T. Vermeulen
Energy research Center Netherlands (ECN), Petten, the Netherlands
ICOS Carbon Portal, ICOS ERIC at Lund University, Lund, Sweden
R. E. Fisher
Royal Holloway, University of London (RHUL), Egham, UK
V. Kazan
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
H. Klein Baltink
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Royal Holloway, University of London (RHUL), Egham, UK
G. Manca
European Commission Joint Research Centre, Ispra (Va), Italy
H. A. J. Meijer
Centrum voor Isotopen Onderzoek (CIO), Rijksuniversiteit Groningen, Groningen, the Netherlands
J. Moncrieff
Atmospheric Chemistry Research Group, University of Bristol, Bristol, UK
S. Pal
Department of Meteorology, Pennsylvania State University, State College, PA, USA
M. Ramonet
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
H. A. Scheeren
European Commission Joint Research Centre, Ispra (Va), Italy
Centrum voor Isotopen Onderzoek (CIO), Rijksuniversiteit Groningen, Groningen, the Netherlands
A. G. Williams
Australian Nuclear Science and Technology Organisation (ANSTO) Environment Research Theme, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Viewed
Total article views: 6,939 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Mar 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
5,270 | 1,430 | 239 | 6,939 | 737 | 202 | 190 |
- HTML: 5,270
- PDF: 1,430
- XML: 239
- Total: 6,939
- Supplement: 737
- BibTeX: 202
- EndNote: 190
Total article views: 6,187 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 14 Sep 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,855 | 1,102 | 230 | 6,187 | 554 | 192 | 181 |
- HTML: 4,855
- PDF: 1,102
- XML: 230
- Total: 6,187
- Supplement: 554
- BibTeX: 192
- EndNote: 181
Total article views: 752 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 30 Mar 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
415 | 328 | 9 | 752 | 183 | 10 | 9 |
- HTML: 415
- PDF: 328
- XML: 9
- Total: 752
- Supplement: 183
- BibTeX: 10
- EndNote: 9
Cited
23 citations as recorded by crossref.
- The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and $$\hbox {CO}_{2}$$ Mixing Ratios at a Low-Altitude Mountaintop T. Lee et al. 10.1007/s10546-018-0343-9
- The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2measurements M. Ramonet et al. 10.1098/rstb.2019.0513
- Inverse modelling of European CH<sub>4</sub> emissions during 2006–2012 using different inverse models and reassessed atmospheric observations P. Bergamaschi et al. 10.5194/acp-18-901-2018
- Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112) S. Myriokefalitakis et al. 10.5194/gmd-13-5507-2020
- AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications C. Sioris et al. 10.1016/j.atmosenv.2017.08.044
- Empirical Evidence for the Frontal Modification of Atmospheric Boundary Layer Depth Variability over Land N. Clark et al. 10.1175/JAMC-D-21-0099.1
- The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation J. Williams et al. 10.5194/gmd-10-721-2017
- Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon‐222 and Back Trajectories S. Chambers et al. 10.1002/2017JD026833
- Prediction of temporal atmospheric boundary layer height using long short-term memory network N. Kumar et al. 10.1080/16000870.2021.1926132
- When and where horizontal advection is critical to alter atmospheric boundary layer dynamics over land: The need for a conceptual framework S. Pal et al. 10.1016/j.atmosres.2021.105825
- Radon metrology for use in climate change observation and radiation protection at the environmental level S. Röttger et al. 10.5194/adgeo-57-37-2022
- Global inverse modeling of CH<sub>4</sub> sources and sinks: an overview of methods S. Houweling et al. 10.5194/acp-17-235-2017
- On the Potential of 25 Years (1991–2015) of Rawinsonde Measurements for Elucidating Climatological and Spatiotemporal Patterns of Afternoon Boundary Layer Depths over the Contiguous US T. Lee & S. Pal 10.1155/2017/6841239
- The 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics S. Pal et al. 10.1029/2019GL086933
- The Influence of Terrain Smoothing on Simulated Convective Boundary-Layer Depths in Mountainous Terrain G. Duine et al. 10.3390/atmos15020145
- Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222 S. Chambers et al. 10.3390/atmos10010025
- The effects of horizontal grid spacing on simulated daytime boundary layer depths in an area of complex terrain in Utah G. Duine & S. De Wekker 10.1007/s10652-017-9547-7
- Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia J. Crawford et al. 10.1016/j.atmosenv.2019.03.018
- Multi‐Season Evaluation of CO2 Weather in OCO‐2 MIP Models L. Zhang et al. 10.1029/2021JD035457
- Advected Air Mass Reservoirs in the Downwind of Mountains and Their Roles in Overrunning Boundary Layer Depths Over the Plains S. Pal & T. Lee 10.1029/2019GL083988
- Observed Evidence That Subsidence Process Stabilizes the Boundary Layer and Increases the Ground Concentration of Secondary Pollutants Y. Shi et al. 10.1029/2021JD035244
- Diurnal and Seasonal Variability of the Atmospheric Boundary-Layer Height in Marseille (France) for Mistral and Sea/Land Breeze Conditions A. Riandet et al. 10.3390/rs15051185
- ALICENET – an Italian network of automated lidar ceilometers for four-dimensional aerosol monitoring: infrastructure, data processing, and applications A. Bellini et al. 10.5194/amt-17-6119-2024
23 citations as recorded by crossref.
- The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and $$\hbox {CO}_{2}$$ Mixing Ratios at a Low-Altitude Mountaintop T. Lee et al. 10.1007/s10546-018-0343-9
- The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2measurements M. Ramonet et al. 10.1098/rstb.2019.0513
- Inverse modelling of European CH<sub>4</sub> emissions during 2006–2012 using different inverse models and reassessed atmospheric observations P. Bergamaschi et al. 10.5194/acp-18-901-2018
- Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112) S. Myriokefalitakis et al. 10.5194/gmd-13-5507-2020
- AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications C. Sioris et al. 10.1016/j.atmosenv.2017.08.044
- Empirical Evidence for the Frontal Modification of Atmospheric Boundary Layer Depth Variability over Land N. Clark et al. 10.1175/JAMC-D-21-0099.1
- The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation J. Williams et al. 10.5194/gmd-10-721-2017
- Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon‐222 and Back Trajectories S. Chambers et al. 10.1002/2017JD026833
- Prediction of temporal atmospheric boundary layer height using long short-term memory network N. Kumar et al. 10.1080/16000870.2021.1926132
- When and where horizontal advection is critical to alter atmospheric boundary layer dynamics over land: The need for a conceptual framework S. Pal et al. 10.1016/j.atmosres.2021.105825
- Radon metrology for use in climate change observation and radiation protection at the environmental level S. Röttger et al. 10.5194/adgeo-57-37-2022
- Global inverse modeling of CH<sub>4</sub> sources and sinks: an overview of methods S. Houweling et al. 10.5194/acp-17-235-2017
- On the Potential of 25 Years (1991–2015) of Rawinsonde Measurements for Elucidating Climatological and Spatiotemporal Patterns of Afternoon Boundary Layer Depths over the Contiguous US T. Lee & S. Pal 10.1155/2017/6841239
- The 2019 Mississippi and Missouri River Flooding and Its Impact on Atmospheric Boundary Layer Dynamics S. Pal et al. 10.1029/2019GL086933
- The Influence of Terrain Smoothing on Simulated Convective Boundary-Layer Depths in Mountainous Terrain G. Duine et al. 10.3390/atmos15020145
- Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222 S. Chambers et al. 10.3390/atmos10010025
- The effects of horizontal grid spacing on simulated daytime boundary layer depths in an area of complex terrain in Utah G. Duine & S. De Wekker 10.1007/s10652-017-9547-7
- Impact of aerosols of sea salt origin in a coastal basin: Sydney, Australia J. Crawford et al. 10.1016/j.atmosenv.2019.03.018
- Multi‐Season Evaluation of CO2 Weather in OCO‐2 MIP Models L. Zhang et al. 10.1029/2021JD035457
- Advected Air Mass Reservoirs in the Downwind of Mountains and Their Roles in Overrunning Boundary Layer Depths Over the Plains S. Pal & T. Lee 10.1029/2019GL083988
- Observed Evidence That Subsidence Process Stabilizes the Boundary Layer and Increases the Ground Concentration of Secondary Pollutants Y. Shi et al. 10.1029/2021JD035244
- Diurnal and Seasonal Variability of the Atmospheric Boundary-Layer Height in Marseille (France) for Mistral and Sea/Land Breeze Conditions A. Riandet et al. 10.3390/rs15051185
- ALICENET – an Italian network of automated lidar ceilometers for four-dimensional aerosol monitoring: infrastructure, data processing, and applications A. Bellini et al. 10.5194/amt-17-6119-2024
Saved (preprint)
Latest update: 25 Dec 2024
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(10106 KB) - Full-text XML
- Corrigendum
-
Supplement
(10863 KB) - BibTeX
- EndNote
Short summary
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer dynamics and the associated variability of trace gases close to the surface, using 222Rn. Focusing on the European scale, we compare the TM5 boundary layer heights with observations from radiosondes, lidar, and ceilometer. Furthermore, we compare TM5 simulations of 222Rn activity concentrations, using a novel, process-based 222Rn flux map over Europe, with 222Rn harmonized measurements from 10 stations.
We evaluate the capability of the TM5 model to reproduce observations of the boundary layer...