Articles | Volume 9, issue 7
https://doi.org/10.5194/gmd-9-2471-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-9-2471-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
Xylar S. Asay-Davis
CORRESPONDING AUTHOR
Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam, Germany
Stephen L. Cornford
Centre for Polar Observation and Modelling, University of Bristol, Bristol, UK
Gaël Durand
CNRS, LGGE, 38041 Grenoble, France
Univ. Grenoble Alpes, LGGE, 38041 Grenoble, France
Benjamin K. Galton-Fenzi
Australian Antarctic Division, Kingston, Tasmania, Australia
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
Rupert M. Gladstone
Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zurich, Switzerland
G. Hilmar Gudmundsson
British Antarctic Survey, Cambridge, UK
Tore Hattermann
Akvaplan-niva, Tromsø, Norway
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
David M. Holland
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
Denise Holland
Center for Global Sea Level Change, New York University Abu Dhabi, Abu Dhabi, UAE
Paul R. Holland
British Antarctic Survey, Cambridge, UK
Daniel F. Martin
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Pierre Mathiot
British Antarctic Survey, Cambridge, UK
Met Office, Exeter, UK
Frank Pattyn
Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Hélène Seroussi
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
Viewed
Total article views: 8,693 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Nov 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
5,673 | 2,720 | 300 | 8,693 | 477 | 294 | 212 |
- HTML: 5,673
- PDF: 2,720
- XML: 300
- Total: 8,693
- Supplement: 477
- BibTeX: 294
- EndNote: 212
Total article views: 7,436 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 25 Jul 2016)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
4,870 | 2,280 | 286 | 7,436 | 345 | 276 | 205 |
- HTML: 4,870
- PDF: 2,280
- XML: 286
- Total: 7,436
- Supplement: 345
- BibTeX: 276
- EndNote: 205
Total article views: 1,257 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 11 Nov 2015)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
803 | 440 | 14 | 1,257 | 132 | 18 | 7 |
- HTML: 803
- PDF: 440
- XML: 14
- Total: 1,257
- Supplement: 132
- BibTeX: 18
- EndNote: 7
Cited
110 citations as recorded by crossref.
- Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves N. Jourdain et al. 10.1016/j.ocemod.2018.11.001
- Millennial‐Scale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse D. Martin et al. 10.1029/2018GL081229
- A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams B. Recinos et al. 10.5194/tc-17-4241-2023
- Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet X. Asay-Davis et al. 10.1007/s40641-017-0071-0
- Ocean‐Forced Ice‐Shelf Thinning in a Synchronously Coupled Ice‐Ocean Model J. Jordan et al. 10.1002/2017JC013251
- The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry E. Hill et al. 10.5194/tc-17-3739-2023
- Major Ice Sheet Change in the Weddell Sea Sector of West Antarctica Over the Last 5,000 Years M. Siegert et al. 10.1029/2019RG000651
- Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws H. Yu et al. 10.5194/tc-12-3861-2018
- Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica M. Hoffman et al. 10.1029/2019JF005155
- FAMOUS version xotzt (FAMOUS-ice): a general circulation model (GCM) capable of energy- and water-conserving coupling to an ice sheet model R. Smith et al. 10.5194/gmd-14-5769-2021
- Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts P. Irvine et al. 10.5194/tc-12-2501-2018
- Modeling ice shelf cavities in the unstructured-grid, Finite Volume Community Ocean Model: Implementation and effects of resolving small-scale topography Q. Zhou & T. Hattermann 10.1016/j.ocemod.2019.101536
- From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model J. Feldmann & A. Levermann 10.5194/tc-11-1913-2017
- Ice-shelf ocean boundary layer dynamics from large-eddy simulations C. Begeman et al. 10.5194/tc-16-277-2022
- Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study J. Wiskandt et al. 10.5194/tc-17-2755-2023
- Data initiatives for ocean-driven melt of Antarctic ice shelves S. Cook et al. 10.1017/aog.2023.6
- Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf S. Yoon et al. 10.1038/s41467-022-27968-8
- Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3) E. van Dongen et al. 10.5194/gmd-11-4563-2018
- Parameterizing the basal melt of tabular icebergs A. FitzMaurice & A. Stern 10.1016/j.ocemod.2018.08.005
- Challenges and Prospects in Ocean Circulation Models B. Fox-Kemper et al. 10.3389/fmars.2019.00065
- Towards a fully unstructured ocean model for ice shelf cavity environments: Model development and verification using the Firedrake finite element framework W. Scott et al. 10.1016/j.ocemod.2023.102178
- Projections of Future Sea Level Contributions from the Greenland and Antarctic Ice Sheets: Challenges Beyond Dynamical Ice Sheet Modeling S. Nowicki & H. Seroussi 10.5670/oceanog.2018.216
- Coupling the U.K. Earth System Model to Dynamic Models of the Greenland and Antarctic Ice Sheets R. Smith et al. 10.1029/2021MS002520
- Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting R. Gladstone et al. 10.5194/tc-11-319-2017
- Explicit representation and parametrised impacts of under ice shelf seas in the <i>z</i><sup>∗</sup> coordinate ocean model NEMO 3.6 P. Mathiot et al. 10.5194/gmd-10-2849-2017
- Geometric controls of tidewater glacier dynamics T. Frank et al. 10.5194/tc-16-581-2022
- Atmospheric and Oceanographic Signatures in the Ice Shelf Channel Morphology of Roi Baudouin Ice Shelf, East Antarctica, Inferred From Radar Data R. Drews et al. 10.1029/2020JF005587
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes W. Lazeroms et al. 10.1175/JPO-D-18-0131.1
- Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0) E. Lambert et al. 10.5194/tc-17-3203-2023
- Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting T. Zhang et al. 10.5194/tc-14-3407-2020
- Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison H. Goelzer et al. 10.5194/tc-12-1433-2018
- Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0) F. Pattyn 10.5194/tc-11-1851-2017
- Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment S. Lhermitte et al. 10.1073/pnas.1912890117
- The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1 R. Gladstone et al. 10.5194/gmd-14-889-2021
- The impact of tides on Antarctic ice shelf melting O. Richter et al. 10.5194/tc-16-1409-2022
- Improving Antarctic Bottom Water precursors in NEMO for climate applications K. Hutchinson et al. 10.5194/gmd-16-3629-2023
- Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream S. Smith-Johnsen et al. 10.5194/tc-14-841-2020
- The transferability of adjoint inversion products between different ice flow models J. Barnes et al. 10.5194/tc-15-1975-2021
- ‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system O. Sergienko & M. Haseloff 10.1017/jog.2023.40
- The DOE E3SM v1.2 Cryosphere Configuration: Description and Simulated Antarctic Ice‐Shelf Basal Melting D. Comeau et al. 10.1029/2021MS002468
- Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6 T. Bracegirdle et al. 10.1002/asl.984
- Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling J. Feldmann & A. Levermann 10.5194/tc-17-327-2023
- Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario P. Mathiot & N. Jourdain 10.5194/os-19-1595-2023
- Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes W. Lazeroms et al. 10.5194/tc-12-49-2018
- Ice shelf fracture parameterization in an ice sheet model S. Sun et al. 10.5194/tc-11-2543-2017
- Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4 K. Naughten et al. 10.5194/gmd-11-1257-2018
- Remote Control of Filchner‐Ronne Ice Shelf Melt Rates by the Antarctic Slope Current C. Bull et al. 10.1029/2020JC016550
- Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis A. Levermann & J. Feldmann 10.5194/tc-13-1621-2019
- Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response C. Berends et al. 10.5194/tc-17-1585-2023
- Recent Progress in Greenland Ice Sheet Modelling H. Goelzer et al. 10.1007/s40641-017-0073-y
- A Semi-Empirical Framework for ice sheet response analysis under Oceanic forcing in Antarctica and Greenland X. Luo & T. Lin 10.1007/s00382-022-06317-x
- Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica A. Hager et al. 10.5194/tc-16-3575-2022
- Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations I. Joughin et al. 10.5194/tc-18-2583-2024
- Antarctic sub-shelf melt rates via PICO R. Reese et al. 10.5194/tc-12-1969-2018
- An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System J. Fyke et al. 10.1029/2018RG000600
- Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review M. Dinniman et al. 10.5670/oceanog.2016.106
- Limited Impact of Thwaites Ice Shelf on Future Ice Loss From Antarctica G. Gudmundsson et al. 10.1029/2023GL102880
- Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica S. Berger et al. 10.5194/tc-11-2675-2017
- The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0) V. Verjans et al. 10.5194/gmd-15-8269-2022
- Mass Balances of the Antarctic and Greenland Ice Sheets Monitored from Space I. Otosaka et al. 10.1007/s10712-023-09795-8
- Modeling tabular icebergs submerged in the ocean A. Stern et al. 10.1002/2017MS001002
- Sensitivity to forecast surface mass balance outweighs sensitivity to basal sliding descriptions for 21st century mass loss from three major Greenland outlet glaciers J. Carr et al. 10.5194/tc-18-2719-2024
- Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations J. Feldmann et al. 10.5194/tc-16-1927-2022
- Predicting ocean-induced ice-shelf melt rates using deep learning S. Rosier et al. 10.5194/tc-17-499-2023
- Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet–ocean model using FISOC (v1.1) – ROMSIceShelf (v1.0) – Elmer/Ice (v9.0) C. Zhao et al. 10.5194/gmd-15-5421-2022
- Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6 S. Nowicki et al. 10.5194/gmd-9-4521-2016
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties M. Berdahl et al. 10.5194/tc-15-2683-2021
- PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5 C. Pelletier et al. 10.5194/gmd-15-553-2022
- The Relative Impacts of Initialization and Climate Forcing in Coupled Ice Sheet‐Ocean Modeling: Application to Pope, Smith, and Kohler Glaciers D. Goldberg & P. Holland 10.1029/2021JF006570
- What Determines the Shape of a Pine‐Island‐Like Ice Shelf? Y. Nakayama et al. 10.1029/2022GL101272
- ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model W. Lipscomb et al. 10.5194/tc-15-633-2021
- Modeling Ice Shelf Cavities and Tabular Icebergs Using Lagrangian Elements A. Stern et al. 10.1029/2018JC014876
- Seasonal Tidewater Glacier Terminus Oscillations Bias Multi‐Decadal Projections of Ice Mass Change D. Felikson et al. 10.1029/2021JF006249
- Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics F. Pattyn et al. 10.1007/s40641-017-0069-7
- The Atlantic Meridional Overturning Circulation in High‐Resolution Models J. Hirschi et al. 10.1029/2019JC015522
- MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids M. Hoffman et al. 10.5194/gmd-11-3747-2018
- ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century H. Seroussi et al. 10.5194/tc-14-3033-2020
- A Generalized Interpolation Material Point Method for Shallow Ice Shelves. 1: Shallow Shelf Approximation and Ice Thickness Evolution A. Huth et al. 10.1029/2020MS002277
- Emulating Present and Future Simulations of Melt Rates at the Base of Antarctic Ice Shelves With Neural Networks C. Burgard et al. 10.1029/2023MS003829
- Marine ice sheet experiments with the Community Ice Sheet Model G. Leguy et al. 10.5194/tc-15-3229-2021
- Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+) S. Cornford et al. 10.5194/tc-14-2283-2020
- Layered seawater intrusion and melt under grounded ice A. Robel et al. 10.5194/tc-16-451-2022
- Simulated dynamic regrounding during marine ice sheet retreat L. Jong et al. 10.5194/tc-12-2425-2018
- Description and evaluation of the Community Ice Sheet Model (CISM) v2.1 W. Lipscomb et al. 10.5194/gmd-12-387-2019
- Vertical processes and resolution impact ice shelf basal melting: A multi-model study D. Gwyther et al. 10.1016/j.ocemod.2020.101569
- Observed Tidal Currents in Prydz Bay and Their Contribution to the Amery Ice Shelf Basal Melting C. Liu et al. 10.34133/olar.0020
- Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14) T. dos Santos et al. 10.5194/gmd-12-215-2019
- Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM) M. Berdahl et al. 10.5194/tc-17-1513-2023
- Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation J. Feldmann et al. 10.5194/tc-18-4011-2024
- Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams R. Reese et al. 10.5194/tc-12-3229-2018
- The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat T. Hillebrand et al. 10.5194/tc-16-4679-2022
- Recent progress in understanding climate thresholds P. Good et al. 10.1177/0309133317751843
- Representation of basal melting at the grounding line in ice flow models H. Seroussi & M. Morlighem 10.5194/tc-12-3085-2018
- The role of subglacial hydrology in ice streams with elevated geothermal heat flux S. Smith-Johnsen et al. 10.1017/jog.2020.8
- Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model D. Goldberg et al. 10.1016/j.ocemod.2018.03.005
- An assessment of basal melt parameterisations for Antarctic ice shelves C. Burgard et al. 10.5194/tc-16-4931-2022
- Glaciology and Global Climate Change J. Moore 10.1016/j.eng.2018.01.001
- Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography C. Berends et al. 10.1017/jog.2023.33
- A Generalized Interpolation Material Point Method for Shallow Ice Shelves. 2: Anisotropic Nonlocal Damage Mechanics and Rift Propagation A. Huth et al. 10.1029/2020MS002292
- The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design N. Swart et al. 10.5194/gmd-16-7289-2023
- Two-timescale response of a large Antarctic ice shelf to climate change K. Naughten et al. 10.1038/s41467-021-22259-0
- icepack: a new glacier flow modeling package in Python, version 1.0 D. Shapero et al. 10.5194/gmd-14-4593-2021
- Recent irreversible retreat phase of Pine Island Glacier B. Reed et al. 10.1038/s41558-023-01887-y
- The sensitivity of West Antarctica to the submarine melting feedback R. Arthern & C. Williams 10.1002/2017GL072514
- Similitude of ice dynamics against scaling of geometry and physical parameters J. Feldmann & A. Levermann 10.5194/tc-10-1753-2016
- Coupled ice shelf‐ocean modeling and complex grounding line retreat from a seabed ridge J. De Rydt & G. Gudmundsson 10.1002/2015JF003791
- Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries S. Sun et al. 10.1017/aog.2016.27
- Ocean circulation and sea‐ice thinning induced by melting ice shelves in the Amundsen Sea N. Jourdain et al. 10.1002/2016JC012509
105 citations as recorded by crossref.
- Simulating or prescribing the influence of tides on the Amundsen Sea ice shelves N. Jourdain et al. 10.1016/j.ocemod.2018.11.001
- Millennial‐Scale Vulnerability of the Antarctic Ice Sheet to Regional Ice Shelf Collapse D. Martin et al. 10.1029/2018GL081229
- A framework for time-dependent ice sheet uncertainty quantification, applied to three West Antarctic ice streams B. Recinos et al. 10.5194/tc-17-4241-2023
- Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet X. Asay-Davis et al. 10.1007/s40641-017-0071-0
- Ocean‐Forced Ice‐Shelf Thinning in a Synchronously Coupled Ice‐Ocean Model J. Jordan et al. 10.1002/2017JC013251
- The stability of present-day Antarctic grounding lines – Part 1: No indication of marine ice sheet instability in the current geometry E. Hill et al. 10.5194/tc-17-3739-2023
- Major Ice Sheet Change in the Weddell Sea Sector of West Antarctica Over the Last 5,000 Years M. Siegert et al. 10.1029/2019RG000651
- Retreat of Thwaites Glacier, West Antarctica, over the next 100 years using various ice flow models, ice shelf melt scenarios and basal friction laws H. Yu et al. 10.5194/tc-12-3861-2018
- Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica M. Hoffman et al. 10.1029/2019JF005155
- FAMOUS version xotzt (FAMOUS-ice): a general circulation model (GCM) capable of energy- and water-conserving coupling to an ice sheet model R. Smith et al. 10.5194/gmd-14-5769-2021
- Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts P. Irvine et al. 10.5194/tc-12-2501-2018
- Modeling ice shelf cavities in the unstructured-grid, Finite Volume Community Ocean Model: Implementation and effects of resolving small-scale topography Q. Zhou & T. Hattermann 10.1016/j.ocemod.2019.101536
- From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model J. Feldmann & A. Levermann 10.5194/tc-11-1913-2017
- Ice-shelf ocean boundary layer dynamics from large-eddy simulations C. Begeman et al. 10.5194/tc-16-277-2022
- Basal melt rates and ocean circulation under the Ryder Glacier ice tongue and their response to climate warming: a high-resolution modelling study J. Wiskandt et al. 10.5194/tc-17-2755-2023
- Data initiatives for ocean-driven melt of Antarctic ice shelves S. Cook et al. 10.1017/aog.2023.6
- Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf S. Yoon et al. 10.1038/s41467-022-27968-8
- Dynamically coupling full Stokes and shallow shelf approximation for marine ice sheet flow using Elmer/Ice (v8.3) E. van Dongen et al. 10.5194/gmd-11-4563-2018
- Parameterizing the basal melt of tabular icebergs A. FitzMaurice & A. Stern 10.1016/j.ocemod.2018.08.005
- Challenges and Prospects in Ocean Circulation Models B. Fox-Kemper et al. 10.3389/fmars.2019.00065
- Towards a fully unstructured ocean model for ice shelf cavity environments: Model development and verification using the Firedrake finite element framework W. Scott et al. 10.1016/j.ocemod.2023.102178
- Projections of Future Sea Level Contributions from the Greenland and Antarctic Ice Sheets: Challenges Beyond Dynamical Ice Sheet Modeling S. Nowicki & H. Seroussi 10.5670/oceanog.2018.216
- Coupling the U.K. Earth System Model to Dynamic Models of the Greenland and Antarctic Ice Sheets R. Smith et al. 10.1029/2021MS002520
- Marine ice sheet model performance depends on basal sliding physics and sub-shelf melting R. Gladstone et al. 10.5194/tc-11-319-2017
- Explicit representation and parametrised impacts of under ice shelf seas in the <i>z</i><sup>∗</sup> coordinate ocean model NEMO 3.6 P. Mathiot et al. 10.5194/gmd-10-2849-2017
- Geometric controls of tidewater glacier dynamics T. Frank et al. 10.5194/tc-16-581-2022
- Atmospheric and Oceanographic Signatures in the Ice Shelf Channel Morphology of Roi Baudouin Ice Shelf, East Antarctica, Inferred From Radar Data R. Drews et al. 10.1029/2020JF005587
- Assessment of sub-shelf melting parameterisations using the ocean–ice-sheet coupled model NEMO(v3.6)–Elmer/Ice(v8.3) L. Favier et al. 10.5194/gmd-12-2255-2019
- An Analytical Derivation of Ice-Shelf Basal Melt Based on the Dynamics of Meltwater Plumes W. Lazeroms et al. 10.1175/JPO-D-18-0131.1
- Modelling Antarctic ice shelf basal melt patterns using the one-layer Antarctic model for dynamical downscaling of ice–ocean exchanges (LADDIE v1.0) E. Lambert et al. 10.5194/tc-17-3203-2023
- Diagnosing the sensitivity of grounding-line flux to changes in sub-ice-shelf melting T. Zhang et al. 10.5194/tc-14-3407-2020
- Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison H. Goelzer et al. 10.5194/tc-12-1433-2018
- Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0) F. Pattyn 10.5194/tc-11-1851-2017
- Damage accelerates ice shelf instability and mass loss in Amundsen Sea Embayment S. Lhermitte et al. 10.1073/pnas.1912890117
- The Framework For Ice Sheet–Ocean Coupling (FISOC) V1.1 R. Gladstone et al. 10.5194/gmd-14-889-2021
- The impact of tides on Antarctic ice shelf melting O. Richter et al. 10.5194/tc-16-1409-2022
- Improving Antarctic Bottom Water precursors in NEMO for climate applications K. Hutchinson et al. 10.5194/gmd-16-3629-2023
- Exceptionally high heat flux needed to sustain the Northeast Greenland Ice Stream S. Smith-Johnsen et al. 10.5194/tc-14-841-2020
- The transferability of adjoint inversion products between different ice flow models J. Barnes et al. 10.5194/tc-15-1975-2021
- ‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system O. Sergienko & M. Haseloff 10.1017/jog.2023.40
- The DOE E3SM v1.2 Cryosphere Configuration: Description and Simulated Antarctic Ice‐Shelf Basal Melting D. Comeau et al. 10.1029/2021MS002468
- Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6 T. Bracegirdle et al. 10.1002/asl.984
- Timescales of outlet-glacier flow with negligible basal friction: theory, observations and modeling J. Feldmann & A. Levermann 10.5194/tc-17-327-2023
- Southern Ocean warming and Antarctic ice shelf melting in conditions plausible by late 23rd century in a high-end scenario P. Mathiot & N. Jourdain 10.5194/os-19-1595-2023
- Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes W. Lazeroms et al. 10.5194/tc-12-49-2018
- Ice shelf fracture parameterization in an ice sheet model S. Sun et al. 10.5194/tc-11-2543-2017
- Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4 K. Naughten et al. 10.5194/gmd-11-1257-2018
- Remote Control of Filchner‐Ronne Ice Shelf Melt Rates by the Antarctic Slope Current C. Bull et al. 10.1029/2020JC016550
- Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis A. Levermann & J. Feldmann 10.5194/tc-13-1621-2019
- Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response C. Berends et al. 10.5194/tc-17-1585-2023
- Recent Progress in Greenland Ice Sheet Modelling H. Goelzer et al. 10.1007/s40641-017-0073-y
- A Semi-Empirical Framework for ice sheet response analysis under Oceanic forcing in Antarctica and Greenland X. Luo & T. Lin 10.1007/s00382-022-06317-x
- Persistent, extensive channelized drainage modeled beneath Thwaites Glacier, West Antarctica A. Hager et al. 10.5194/tc-16-3575-2022
- Responses of the Pine Island and Thwaites glaciers to melt and sliding parameterizations I. Joughin et al. 10.5194/tc-18-2583-2024
- Antarctic sub-shelf melt rates via PICO R. Reese et al. 10.5194/tc-12-1969-2018
- An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System J. Fyke et al. 10.1029/2018RG000600
- Modeling Ice Shelf/Ocean Interaction in Antarctica: A Review M. Dinniman et al. 10.5670/oceanog.2016.106
- Limited Impact of Thwaites Ice Shelf on Future Ice Loss From Antarctica G. Gudmundsson et al. 10.1029/2023GL102880
- Detecting high spatial variability of ice shelf basal mass balance, Roi Baudouin Ice Shelf, Antarctica S. Berger et al. 10.5194/tc-11-2675-2017
- The Stochastic Ice-Sheet and Sea-Level System Model v1.0 (StISSM v1.0) V. Verjans et al. 10.5194/gmd-15-8269-2022
- Mass Balances of the Antarctic and Greenland Ice Sheets Monitored from Space I. Otosaka et al. 10.1007/s10712-023-09795-8
- Modeling tabular icebergs submerged in the ocean A. Stern et al. 10.1002/2017MS001002
- Sensitivity to forecast surface mass balance outweighs sensitivity to basal sliding descriptions for 21st century mass loss from three major Greenland outlet glaciers J. Carr et al. 10.5194/tc-18-2719-2024
- Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations J. Feldmann et al. 10.5194/tc-16-1927-2022
- Predicting ocean-induced ice-shelf melt rates using deep learning S. Rosier et al. 10.5194/tc-17-499-2023
- Evaluation of an emergent feature of sub-shelf melt oscillations from an idealized coupled ice sheet–ocean model using FISOC (v1.1) – ROMSIceShelf (v1.0) – Elmer/Ice (v9.0) C. Zhao et al. 10.5194/gmd-15-5421-2022
- Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6 S. Nowicki et al. 10.5194/gmd-9-4521-2016
- Benchmarking the vertically integrated ice-sheet model IMAU-ICE (version 2.0) C. Berends et al. 10.5194/gmd-15-5667-2022
- Statistical emulation of a perturbed basal melt ensemble of an ice sheet model to better quantify Antarctic sea level rise uncertainties M. Berdahl et al. 10.5194/tc-15-2683-2021
- PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5 C. Pelletier et al. 10.5194/gmd-15-553-2022
- The Relative Impacts of Initialization and Climate Forcing in Coupled Ice Sheet‐Ocean Modeling: Application to Pope, Smith, and Kohler Glaciers D. Goldberg & P. Holland 10.1029/2021JF006570
- What Determines the Shape of a Pine‐Island‐Like Ice Shelf? Y. Nakayama et al. 10.1029/2022GL101272
- ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model W. Lipscomb et al. 10.5194/tc-15-633-2021
- Modeling Ice Shelf Cavities and Tabular Icebergs Using Lagrangian Elements A. Stern et al. 10.1029/2018JC014876
- Seasonal Tidewater Glacier Terminus Oscillations Bias Multi‐Decadal Projections of Ice Mass Change D. Felikson et al. 10.1029/2021JF006249
- Progress in Numerical Modeling of Antarctic Ice-Sheet Dynamics F. Pattyn et al. 10.1007/s40641-017-0069-7
- The Atlantic Meridional Overturning Circulation in High‐Resolution Models J. Hirschi et al. 10.1029/2019JC015522
- MPAS-Albany Land Ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids M. Hoffman et al. 10.5194/gmd-11-3747-2018
- ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century H. Seroussi et al. 10.5194/tc-14-3033-2020
- A Generalized Interpolation Material Point Method for Shallow Ice Shelves. 1: Shallow Shelf Approximation and Ice Thickness Evolution A. Huth et al. 10.1029/2020MS002277
- Emulating Present and Future Simulations of Melt Rates at the Base of Antarctic Ice Shelves With Neural Networks C. Burgard et al. 10.1029/2023MS003829
- Marine ice sheet experiments with the Community Ice Sheet Model G. Leguy et al. 10.5194/tc-15-3229-2021
- Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+) S. Cornford et al. 10.5194/tc-14-2283-2020
- Layered seawater intrusion and melt under grounded ice A. Robel et al. 10.5194/tc-16-451-2022
- Simulated dynamic regrounding during marine ice sheet retreat L. Jong et al. 10.5194/tc-12-2425-2018
- Description and evaluation of the Community Ice Sheet Model (CISM) v2.1 W. Lipscomb et al. 10.5194/gmd-12-387-2019
- Vertical processes and resolution impact ice shelf basal melting: A multi-model study D. Gwyther et al. 10.1016/j.ocemod.2020.101569
- Observed Tidal Currents in Prydz Bay and Their Contribution to the Amery Ice Shelf Basal Melting C. Liu et al. 10.34133/olar.0020
- Implementation and performance of adaptive mesh refinement in the Ice Sheet System Model (ISSM v4.14) T. dos Santos et al. 10.5194/gmd-12-215-2019
- Exploring ice sheet model sensitivity to ocean thermal forcing and basal sliding using the Community Ice Sheet Model (CISM) M. Berdahl et al. 10.5194/tc-17-1513-2023
- Hysteresis of idealized, instability-prone outlet glaciers in response to pinning-point buttressing variation J. Feldmann et al. 10.5194/tc-18-4011-2024
- Grounding-line flux formula applied as a flux condition in numerical simulations fails for buttressed Antarctic ice streams R. Reese et al. 10.5194/tc-12-3229-2018
- The contribution of Humboldt Glacier, northern Greenland, to sea-level rise through 2100 constrained by recent observations of speedup and retreat T. Hillebrand et al. 10.5194/tc-16-4679-2022
- Recent progress in understanding climate thresholds P. Good et al. 10.1177/0309133317751843
- Representation of basal melting at the grounding line in ice flow models H. Seroussi & M. Morlighem 10.5194/tc-12-3085-2018
- The role of subglacial hydrology in ice streams with elevated geothermal heat flux S. Smith-Johnsen et al. 10.1017/jog.2020.8
- Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model D. Goldberg et al. 10.1016/j.ocemod.2018.03.005
- An assessment of basal melt parameterisations for Antarctic ice shelves C. Burgard et al. 10.5194/tc-16-4931-2022
- Glaciology and Global Climate Change J. Moore 10.1016/j.eng.2018.01.001
- Strong impact of sub-shelf melt parameterisation on ice-sheet retreat in idealised and realistic Antarctic topography C. Berends et al. 10.1017/jog.2023.33
- A Generalized Interpolation Material Point Method for Shallow Ice Shelves. 2: Anisotropic Nonlocal Damage Mechanics and Rift Propagation A. Huth et al. 10.1029/2020MS002292
- The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design N. Swart et al. 10.5194/gmd-16-7289-2023
- Two-timescale response of a large Antarctic ice shelf to climate change K. Naughten et al. 10.1038/s41467-021-22259-0
- icepack: a new glacier flow modeling package in Python, version 1.0 D. Shapero et al. 10.5194/gmd-14-4593-2021
- Recent irreversible retreat phase of Pine Island Glacier B. Reed et al. 10.1038/s41558-023-01887-y
5 citations as recorded by crossref.
- The sensitivity of West Antarctica to the submarine melting feedback R. Arthern & C. Williams 10.1002/2017GL072514
- Similitude of ice dynamics against scaling of geometry and physical parameters J. Feldmann & A. Levermann 10.5194/tc-10-1753-2016
- Coupled ice shelf‐ocean modeling and complex grounding line retreat from a seabed ridge J. De Rydt & G. Gudmundsson 10.1002/2015JF003791
- Impact of ocean forcing on the Aurora Basin in the 21st and 22nd centuries S. Sun et al. 10.1017/aog.2016.27
- Ocean circulation and sea‐ice thinning induced by melting ice shelves in the Amundsen Sea N. Jourdain et al. 10.1002/2016JC012509
Saved (preprint)
Latest update: 15 Sep 2024
Short summary
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of ice sheets and glaciers, including assessing their contributions to sea level change. Here we describe the idealized experiments that make up three interrelated Model Intercomparison Projects (MIPs) for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities.
Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming...