Articles | Volume 8, issue 9
Geosci. Model Dev., 8, 2749–2776, 2015
https://doi.org/10.5194/gmd-8-2749-2015

Special issue: The community version of the Weather Research and Forecasting...

Special issue: Coupled chemistry–meteorology modelling: status and...

Geosci. Model Dev., 8, 2749–2776, 2015
https://doi.org/10.5194/gmd-8-2749-2015

Development and technical paper 04 Sep 2015

Development and technical paper | 04 Sep 2015

A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

P. Tuccella et al.

Viewed

Total article views: 3,959 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,811 1,925 223 3,959 418 186 199
  • HTML: 1,811
  • PDF: 1,925
  • XML: 223
  • Total: 3,959
  • Supplement: 418
  • BibTeX: 186
  • EndNote: 199
Views and downloads (calculated since 03 Feb 2015)
Cumulative views and downloads (calculated since 03 Feb 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Latest update: 16 Sep 2021
Download
Short summary
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the WRF-Chem model. The new chemistry was evaluated on a cloud-resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. Sensitivity tests have been performed to study the impact of SOA on cloud prediction and development.