Articles | Volume 8, issue 9
Development and technical paper
04 Sep 2015
Development and technical paper |  | 04 Sep 2015

A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

P. Tuccella, G. Curci, G. A. Grell, G. Visconti, S. Crumeyrolle, A. Schwarzenboeck, and A. A. Mensah


Total article views: 5,758 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,081 2,405 272 5,758 584 227 232
  • HTML: 3,081
  • PDF: 2,405
  • XML: 272
  • Total: 5,758
  • Supplement: 584
  • BibTeX: 227
  • EndNote: 232
Views and downloads (calculated since 03 Feb 2015)
Cumulative views and downloads (calculated since 03 Feb 2015)


Saved (final revised paper)

Saved (preprint)

Latest update: 22 May 2024
Short summary
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the WRF-Chem model. The new chemistry was evaluated on a cloud-resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. Sensitivity tests have been performed to study the impact of SOA on cloud prediction and development.