Articles | Volume 8, issue 9
https://doi.org/10.5194/gmd-8-2749-2015
https://doi.org/10.5194/gmd-8-2749-2015
Development and technical paper
 | 
04 Sep 2015
Development and technical paper |  | 04 Sep 2015

A new chemistry option in WRF-Chem v. 3.4 for the simulation of direct and indirect aerosol effects using VBS: evaluation against IMPACT-EUCAARI data

P. Tuccella, G. Curci, G. A. Grell, G. Visconti, S. Crumeyrolle, A. Schwarzenboeck, and A. A. Mensah

Viewed

Total article views: 5,969 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
3,215 2,474 280 5,969 604 233 237
  • HTML: 3,215
  • PDF: 2,474
  • XML: 280
  • Total: 5,969
  • Supplement: 604
  • BibTeX: 233
  • EndNote: 237
Views and downloads (calculated since 03 Feb 2015)
Cumulative views and downloads (calculated since 03 Feb 2015)

Cited

Saved (final revised paper)

Saved (preprint)

Latest update: 21 Nov 2024
Download
Short summary
A parameterization for secondary organic aerosol (SOA) production based on the volatility basis set (VBS) approach has been coupled with microphysics and radiative schemes in the WRF-Chem model. The new chemistry was evaluated on a cloud-resolving scale against ground-based and aircraft measurements collected during the IMPACT-EUCAARI campaign, and complemented with satellite data from MODIS. Sensitivity tests have been performed to study the impact of SOA on cloud prediction and development.