Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2655-2015
https://doi.org/10.5194/gmd-8-2655-2015
Model description paper
 | 
27 Aug 2015
Model description paper |  | 27 Aug 2015

The Polar Vegetation Photosynthesis and Respiration Model: a parsimonious, satellite-data-driven model of high-latitude CO2 exchange

K. A. Luus and J. C. Lin

Abstract. We introduce the Polar Vegetation Photosynthesis and Respiration Model (PolarVPRM), a remote-sensing-based approach for generating accurate, high-resolution (≥ 1 km2, 3 hourly) estimates of net ecosystem CO2 exchange (NEE). PolarVPRM simulates NEE using polar-specific vegetation classes, and by representing high-latitude influences on NEE, such as the influence of soil temperature on subnivean respiration. We present a description, validation and error analysis (first-order Taylor expansion) of PolarVPRM, followed by an examination of per-pixel trends (2001–2012) in model output for the North American terrestrial region north of 55° N. PolarVPRM was validated against eddy covariance (EC) observations from nine North American sites, of which three were used in model calibration. Comparisons of EC NEE to NEE from three models indicated that PolarVPRM displayed similar or better statistical agreement with eddy covariance observations than existing models showed. Trend analysis (2001–2012) indicated that warming air temperatures and drought stress in forests increased growing season rates of respiration, and decreased rates of net carbon uptake by vegetation when air temperatures exceeded optimal temperatures for photosynthesis. Concurrent increases in growing season length at Arctic tundra sites allowed for increases in photosynthetic uptake over time by tundra vegetation. PolarVPRM estimated that the North American high-latitude region changed from a carbon source (2001–2004) to a carbon sink (2005–2010) to again a source (2011–2012) in response to changing environmental conditions.

Download
Short summary
PolarVPRM uses a diagnostic, remote-sensing-based approach optimized for polar regions to estimate net ecosystem CO2 exchange (NEE) between the high-latitude land surface and the atmosphere. PolarVPRM NEE shows close agreement with NEE observed from eddy covariance sites, relative to other models. Examination of per-pixel trends in PolarVPRM NEE and its drivers (North America north of 55 N, 2001-2012) indicate arctic greening and boreal browning in response to changing environmental conditions.