Articles | Volume 8, issue 8
https://doi.org/10.5194/gmd-8-2553-2015
https://doi.org/10.5194/gmd-8-2553-2015
Model description paper
 | 
13 Aug 2015
Model description paper |  | 13 Aug 2015

Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Shantanu Jathar on behalf of the Authors (22 May 2015)  Author's response 
ED: Referee Nomination & Report Request started (11 Jun 2015) by Gerd A. Folberth
RR by Anonymous Referee #1 (22 Jun 2015)
RR by Anonymous Referee #2 (09 Jul 2015)
ED: Publish as is (15 Jul 2015) by Gerd A. Folberth
AR by Shantanu Jathar on behalf of the Authors (15 Jul 2015)
Download
Short summary
Multi-generational oxidation of organic vapors can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA). Here, we implement a semi-explicit, constrained multi-generational oxidation model of Cappa and Wilson (2012) in a 3-D air quality model. When compared with results from a current-generation SOA model, we predict similar mass concentrations of SOA but a different chemical composition. O:C ratios of SOA are in line with those measured globally.