Articles | Volume 6, issue 4
https://doi.org/10.5194/gmd-6-1157-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-6-1157-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Failure analysis of parameter-induced simulation crashes in climate models
D. D. Lucas
Lawrence Livermore National Laboratory, Livermore, CA, USA
R. Klein
Lawrence Livermore National Laboratory, Livermore, CA, USA
Department of Astronomy, University of California, Berkeley, CA 94720, USA
J. Tannahill
Lawrence Livermore National Laboratory, Livermore, CA, USA
D. Ivanova
Lawrence Livermore National Laboratory, Livermore, CA, USA
S. Brandon
Lawrence Livermore National Laboratory, Livermore, CA, USA
D. Domyancic
Lawrence Livermore National Laboratory, Livermore, CA, USA
Y. Zhang
Lawrence Livermore National Laboratory, Livermore, CA, USA
Viewed
Total article views: 8,052 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,576 | 3,156 | 320 | 8,052 | 269 | 166 |
- HTML: 4,576
- PDF: 3,156
- XML: 320
- Total: 8,052
- BibTeX: 269
- EndNote: 166
Total article views: 5,347 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 07 Aug 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,631 | 2,435 | 281 | 5,347 | 246 | 160 |
- HTML: 2,631
- PDF: 2,435
- XML: 281
- Total: 5,347
- BibTeX: 246
- EndNote: 160
Total article views: 2,705 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
1,945 | 721 | 39 | 2,705 | 23 | 6 |
- HTML: 1,945
- PDF: 721
- XML: 39
- Total: 2,705
- BibTeX: 23
- EndNote: 6
Cited
64 citations as recorded by crossref.
- Training Artificial Neural Networks Using a Global Optimization Method That Utilizes Neural Networks I. Tsoulos & A. Tzallas 10.3390/ai4030027
- Random Bits Forest: a Strong Classifier/Regressor for Big Data Y. Wang et al. 10.1038/srep30086
- Resolving learning rates adaptively by locating stochastic non-negative associated gradient projection points using line searches D. Kafka & D. Wilke 10.1007/s10898-020-00921-z
- The parametric sensitivity of CAM5's MJO J. Boyle et al. 10.1002/2014JD022507
- Learning Functions and Classes Using Rules I. Tsoulos 10.3390/ai3030044
- A simple and efficient architecture for trainable activation functions A. Apicella et al. 10.1016/j.neucom.2019.08.065
- FT4cip: A new functional tree for classification in class imbalance problems L. Cañete-Sifuentes et al. 10.1016/j.knosys.2022.109294
- Value proposition operationalization in peer-to-peer platforms using machine learning J. Ramos-Henríquez et al. 10.1016/j.tourman.2021.104288
- Train Neural Networks with a Hybrid Method That Incorporates a Novel Simulated Annealing Procedure I. Tsoulos et al. 10.3390/appliedmath4030061
- A Feature Construction Method That Combines Particle Swarm Optimization and Grammatical Evolution I. Tsoulos & A. Tzallas 10.3390/app13148124
- Random bits regression: a strong general predictor for big data Y. Wang et al. 10.1186/s41044-016-0010-4
- Reduced order models for assessing CO2 impacts in shallow unconfined aquifers E. Keating et al. 10.1016/j.ijggc.2016.01.008
- Bound the Parameters of Neural Networks Using Particle Swarm Optimization I. Tsoulos et al. 10.3390/computers12040082
- Exploring High‐Dimensional Structure via Axis‐Aligned Decomposition of Linear Projections J. Thiagarajan et al. 10.1111/cgf.13416
- A Sensitivity Analysis of Two Mesoscale Models: COAMPS and WRF C. Marzban et al. 10.1175/MWR-D-19-0271.1
- Improving the Generalization Abilities of Constructed Neural Networks with the Addition of Local Optimization Techniques I. Tsoulos et al. 10.3390/a17100446
- Tackling Climate Change with Machine Learning D. Rolnick et al. 10.1145/3485128
- Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation I. Yamane et al. 10.1162/NECO_a_00844
- QFC: A Parallel Software Tool for Feature Construction, Based on Grammatical Evolution I. Tsoulos 10.3390/a15080295
- Constructing Features Using a Hybrid Genetic Algorithm I. Tsoulos 10.3390/signals3020012
- Low regularity exponential-type integrators for the “good” Boussinesq equation H. Li & C. Su 10.1093/imanum/drac081
- Deep learning with support vector data description S. Kim et al. 10.1016/j.neucom.2014.09.086
- Application of the Fuzzy Approach for Evaluating and Selecting Relevant Objects, Features, and Their Ranges W. Paja 10.3390/e25081223
- Ensemble simulations of inertial confinement fusion implosions R. Nora et al. 10.1002/sam.11344
- The examination of the effect of the criterion for neural network’s learning on the effectiveness of the qualitative analysis of multidimensional data D. Jamróz 10.1007/s10115-020-01441-8
- RN-SMOTE: Reduced Noise SMOTE based on DBSCAN for enhancing imbalanced data classification A. Arafa et al. 10.1016/j.jksuci.2022.06.005
- An automated design process for short pulse laser driven opacity experiments M. Martin et al. 10.1016/j.hedp.2017.12.001
- RFCL: A new under-sampling method of reducing the degree of imbalance and overlap R. Zhang et al. 10.1007/s10044-020-00929-x
- A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques P. Chen et al. 10.1177/1550147718777440
- Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant D. Lucas et al. 10.5194/acp-17-13521-2017
- Adapting the Parameters of RBF Networks Using Grammatical Evolution I. Tsoulos et al. 10.3390/ai4040054
- Locating the Parameters of RBF Networks Using a Hybrid Particle Swarm Optimization Method I. Tsoulos & V. Charilogis 10.3390/a16020071
- Sensitivity Analysis of the Spatial Structure of Forecasts in Mesoscale Models: Noncontinuous Model Parameters C. Marzban et al. 10.1175/MWR-D-19-0321.1
- A Two-Phase Evolutionary Method to Train RBF Networks I. Tsoulos et al. 10.3390/app12052439
- Local Crossover: A New Genetic Operator for Grammatical Evolution I. Tsoulos et al. 10.3390/a17100461
- Using Optimization Techniques in Grammatical Evolution I. Tsoulos et al. 10.3390/fi16050172
- A Review and Experimental Comparison of Multivariate Decision Trees L. Canete-Sifuentes et al. 10.1109/ACCESS.2021.3102239
- An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers U. Garciarena & R. Santana 10.1016/j.eswa.2017.07.026
- On the effect of model parameters on forecast objects C. Marzban et al. 10.5194/gmd-11-1577-2018
- To what extent does ENSO rectify the tropical Pacific mean state? M. Xue & T. Li 10.1007/s00382-023-06750-6
- What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models R. Sheikholeslami et al. 10.5194/gmd-12-4275-2019
- A Rule-Based Method to Locate the Bounds of Neural Networks I. Tsoulos et al. 10.3390/knowledge2030024
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- Approximation trees: statistical reproducibility in model distillation Y. Zhou et al. 10.1007/s10618-022-00907-3
- A genetic algorithm approach to optimising random forests applied to class engineered data E. Elyan & M. Gaber 10.1016/j.ins.2016.08.007
- Calibrated simplex-mapping classification R. Heese et al. 10.1371/journal.pone.0279876
- Applying Bounding Techniques on Grammatical Evolution I. Tsoulos et al. 10.3390/computers13050111
- Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models W. Paja et al. 10.5194/gmd-9-1065-2016
- Extremely simple classifier based on fuzzy logic and gene expression programming J. Kluska & M. Madera 10.1016/j.ins.2021.05.041
- Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model B. Pearson et al. 10.1016/j.ocemod.2017.05.007
- Uncertainty Analysis of Simulations of the Turn‐of‐the‐Century Drought in the Western United States G. Anderson et al. 10.1029/2017JD027824
- Constructing the Bounds for Neural Network Training Using Grammatical Evolution I. Tsoulos et al. 10.3390/computers12110226
- A novel Bayesian method for variable selection and estimation in binary quantile regression M. Dao et al. 10.1002/sam.11591
- Multi-Layer Hybrid (MLH) balancing technique: A combined approach to remove data imbalance M. Islam & H. Mustafa 10.1016/j.datak.2022.102105
- New Approach Based on Termite's Hill Building for Prediction of Successful Simulations in Climate Models M. Rahmani et al. 10.4018/IJSIR.2017070103
- Machine Learning Predictions of a Multiresolution Climate Model Ensemble G. Anderson & D. Lucas 10.1029/2018GL077049
- Selective Neuron Re-Computation (SNRC) for Error-Tolerant Neural Networks S. Liu et al. 10.1109/TC.2021.3056992
- The Construction of a Majority-Voting Ensemble Based on the Interrelation and Amount of Information of Features F. Aydın & Z. Aslan 10.1093/comjnl/bxz118
- Semisupervised Tangent Space Discriminant Analysis Y. Zhou & S. Sun 10.1155/2015/706180
- Result-Based Re-computation for Error-Tolerant Classification by a Support Vector Machine S. Liu et al. 10.1109/TAI.2020.3028321
- The use of Lorentzian distance metric in classification problems Y. Kerimbekov et al. 10.1016/j.patrec.2016.09.006
- Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification M. Loog 10.1109/TPAMI.2015.2452921
- Voting Margin: A Scheme for Error-Tolerant k Nearest Neighbors Classifiers for Machine Learning S. Liu et al. 10.1109/TETC.2019.2963268
- When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores J. Wang et al. 10.1007/s00521-017-3102-9
56 citations as recorded by crossref.
- Training Artificial Neural Networks Using a Global Optimization Method That Utilizes Neural Networks I. Tsoulos & A. Tzallas 10.3390/ai4030027
- Random Bits Forest: a Strong Classifier/Regressor for Big Data Y. Wang et al. 10.1038/srep30086
- Resolving learning rates adaptively by locating stochastic non-negative associated gradient projection points using line searches D. Kafka & D. Wilke 10.1007/s10898-020-00921-z
- The parametric sensitivity of CAM5's MJO J. Boyle et al. 10.1002/2014JD022507
- Learning Functions and Classes Using Rules I. Tsoulos 10.3390/ai3030044
- A simple and efficient architecture for trainable activation functions A. Apicella et al. 10.1016/j.neucom.2019.08.065
- FT4cip: A new functional tree for classification in class imbalance problems L. Cañete-Sifuentes et al. 10.1016/j.knosys.2022.109294
- Value proposition operationalization in peer-to-peer platforms using machine learning J. Ramos-Henríquez et al. 10.1016/j.tourman.2021.104288
- Train Neural Networks with a Hybrid Method That Incorporates a Novel Simulated Annealing Procedure I. Tsoulos et al. 10.3390/appliedmath4030061
- A Feature Construction Method That Combines Particle Swarm Optimization and Grammatical Evolution I. Tsoulos & A. Tzallas 10.3390/app13148124
- Random bits regression: a strong general predictor for big data Y. Wang et al. 10.1186/s41044-016-0010-4
- Reduced order models for assessing CO2 impacts in shallow unconfined aquifers E. Keating et al. 10.1016/j.ijggc.2016.01.008
- Bound the Parameters of Neural Networks Using Particle Swarm Optimization I. Tsoulos et al. 10.3390/computers12040082
- Exploring High‐Dimensional Structure via Axis‐Aligned Decomposition of Linear Projections J. Thiagarajan et al. 10.1111/cgf.13416
- A Sensitivity Analysis of Two Mesoscale Models: COAMPS and WRF C. Marzban et al. 10.1175/MWR-D-19-0271.1
- Improving the Generalization Abilities of Constructed Neural Networks with the Addition of Local Optimization Techniques I. Tsoulos et al. 10.3390/a17100446
- Tackling Climate Change with Machine Learning D. Rolnick et al. 10.1145/3485128
- Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation I. Yamane et al. 10.1162/NECO_a_00844
- QFC: A Parallel Software Tool for Feature Construction, Based on Grammatical Evolution I. Tsoulos 10.3390/a15080295
- Constructing Features Using a Hybrid Genetic Algorithm I. Tsoulos 10.3390/signals3020012
- Low regularity exponential-type integrators for the “good” Boussinesq equation H. Li & C. Su 10.1093/imanum/drac081
- Deep learning with support vector data description S. Kim et al. 10.1016/j.neucom.2014.09.086
- Application of the Fuzzy Approach for Evaluating and Selecting Relevant Objects, Features, and Their Ranges W. Paja 10.3390/e25081223
- Ensemble simulations of inertial confinement fusion implosions R. Nora et al. 10.1002/sam.11344
- The examination of the effect of the criterion for neural network’s learning on the effectiveness of the qualitative analysis of multidimensional data D. Jamróz 10.1007/s10115-020-01441-8
- RN-SMOTE: Reduced Noise SMOTE based on DBSCAN for enhancing imbalanced data classification A. Arafa et al. 10.1016/j.jksuci.2022.06.005
- An automated design process for short pulse laser driven opacity experiments M. Martin et al. 10.1016/j.hedp.2017.12.001
- RFCL: A new under-sampling method of reducing the degree of imbalance and overlap R. Zhang et al. 10.1007/s10044-020-00929-x
- A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques P. Chen et al. 10.1177/1550147718777440
- Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant D. Lucas et al. 10.5194/acp-17-13521-2017
- Adapting the Parameters of RBF Networks Using Grammatical Evolution I. Tsoulos et al. 10.3390/ai4040054
- Locating the Parameters of RBF Networks Using a Hybrid Particle Swarm Optimization Method I. Tsoulos & V. Charilogis 10.3390/a16020071
- Sensitivity Analysis of the Spatial Structure of Forecasts in Mesoscale Models: Noncontinuous Model Parameters C. Marzban et al. 10.1175/MWR-D-19-0321.1
- A Two-Phase Evolutionary Method to Train RBF Networks I. Tsoulos et al. 10.3390/app12052439
- Local Crossover: A New Genetic Operator for Grammatical Evolution I. Tsoulos et al. 10.3390/a17100461
- Using Optimization Techniques in Grammatical Evolution I. Tsoulos et al. 10.3390/fi16050172
- A Review and Experimental Comparison of Multivariate Decision Trees L. Canete-Sifuentes et al. 10.1109/ACCESS.2021.3102239
- An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers U. Garciarena & R. Santana 10.1016/j.eswa.2017.07.026
- On the effect of model parameters on forecast objects C. Marzban et al. 10.5194/gmd-11-1577-2018
- To what extent does ENSO rectify the tropical Pacific mean state? M. Xue & T. Li 10.1007/s00382-023-06750-6
- What should we do when a model crashes? Recommendations for global sensitivity analysis of Earth and environmental systems models R. Sheikholeslami et al. 10.5194/gmd-12-4275-2019
- A Rule-Based Method to Locate the Bounds of Neural Networks I. Tsoulos et al. 10.3390/knowledge2030024
- Finding plausible and diverse variants of a climate model. Part II: development and validation of methodology A. Karmalkar et al. 10.1007/s00382-019-04617-3
- Approximation trees: statistical reproducibility in model distillation Y. Zhou et al. 10.1007/s10618-022-00907-3
- A genetic algorithm approach to optimising random forests applied to class engineered data E. Elyan & M. Gaber 10.1016/j.ins.2016.08.007
- Calibrated simplex-mapping classification R. Heese et al. 10.1371/journal.pone.0279876
- Applying Bounding Techniques on Grammatical Evolution I. Tsoulos et al. 10.3390/computers13050111
- Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models W. Paja et al. 10.5194/gmd-9-1065-2016
- Extremely simple classifier based on fuzzy logic and gene expression programming J. Kluska & M. Madera 10.1016/j.ins.2021.05.041
- Evaluation of scale-aware subgrid mesoscale eddy models in a global eddy-rich model B. Pearson et al. 10.1016/j.ocemod.2017.05.007
- Uncertainty Analysis of Simulations of the Turn‐of‐the‐Century Drought in the Western United States G. Anderson et al. 10.1029/2017JD027824
- Constructing the Bounds for Neural Network Training Using Grammatical Evolution I. Tsoulos et al. 10.3390/computers12110226
- A novel Bayesian method for variable selection and estimation in binary quantile regression M. Dao et al. 10.1002/sam.11591
- Multi-Layer Hybrid (MLH) balancing technique: A combined approach to remove data imbalance M. Islam & H. Mustafa 10.1016/j.datak.2022.102105
- New Approach Based on Termite's Hill Building for Prediction of Successful Simulations in Climate Models M. Rahmani et al. 10.4018/IJSIR.2017070103
- Machine Learning Predictions of a Multiresolution Climate Model Ensemble G. Anderson & D. Lucas 10.1029/2018GL077049
8 citations as recorded by crossref.
- Selective Neuron Re-Computation (SNRC) for Error-Tolerant Neural Networks S. Liu et al. 10.1109/TC.2021.3056992
- The Construction of a Majority-Voting Ensemble Based on the Interrelation and Amount of Information of Features F. Aydın & Z. Aslan 10.1093/comjnl/bxz118
- Semisupervised Tangent Space Discriminant Analysis Y. Zhou & S. Sun 10.1155/2015/706180
- Result-Based Re-computation for Error-Tolerant Classification by a Support Vector Machine S. Liu et al. 10.1109/TAI.2020.3028321
- The use of Lorentzian distance metric in classification problems Y. Kerimbekov et al. 10.1016/j.patrec.2016.09.006
- Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification M. Loog 10.1109/TPAMI.2015.2452921
- Voting Margin: A Scheme for Error-Tolerant k Nearest Neighbors Classifiers for Machine Learning S. Liu et al. 10.1109/TETC.2019.2963268
- When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores J. Wang et al. 10.1007/s00521-017-3102-9
Saved (final revised paper)
Saved (preprint)
Latest update: 23 Nov 2024