Articles | Volume 4, issue 2
https://doi.org/10.5194/gmd-4-299-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-4-299-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Construction of non-diagonal background error covariance matrices for global chemical data assimilation
K. Singh
Department of Computer Science, Virginia Polytechnic Institute and State University, 2202 Kraft Drive, Blacksburg, VA 24060, USA
M. Jardak
Department of Computer Science, Virginia Polytechnic Institute and State University, 2202 Kraft Drive, Blacksburg, VA 24060, USA
Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, FL 32306, USA
A. Sandu
Department of Computer Science, Virginia Polytechnic Institute and State University, 2202 Kraft Drive, Blacksburg, VA 24060, USA
K. Bowman
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
M. Lee
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
D. Jones
Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
Viewed
Total article views: 6,758 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 22 Oct 2010)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
4,333 | 2,124 | 301 | 6,758 | 212 | 166 |
- HTML: 4,333
- PDF: 2,124
- XML: 301
- Total: 6,758
- BibTeX: 212
- EndNote: 166
Total article views: 4,087 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 11 Apr 2011)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,280 | 1,539 | 268 | 4,087 | 187 | 160 |
- HTML: 2,280
- PDF: 1,539
- XML: 268
- Total: 4,087
- BibTeX: 187
- EndNote: 160
Total article views: 2,671 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 01 Feb 2013, article published on 22 Oct 2010)
HTML | XML | Total | BibTeX | EndNote | |
---|---|---|---|---|---|
2,053 | 585 | 33 | 2,671 | 25 | 6 |
- HTML: 2,053
- PDF: 585
- XML: 33
- Total: 2,671
- BibTeX: 25
- EndNote: 6
Cited
32 citations as recorded by crossref.
- Network design for quantifying urban CO<sub>2</sub> emissions: assessing trade-offs between precision and network density A. Turner et al. 10.5194/acp-16-13465-2016
- Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations M. Huang et al. 10.1002/2014JD022993
- Background error covariance with balance constraints for aerosol species and applications in variational data assimilation Z. Zang et al. 10.5194/gmd-9-2623-2016
- Profiling tropospheric CO<sub>2</sub> using Aura TES and TCCON instruments L. Kuai et al. 10.5194/amt-6-63-2013
- Development of a variational flux inversion system (INVICAT v1.0) using the TOMCAT chemical transport model C. Wilson et al. 10.5194/gmd-7-2485-2014
- A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada R. Ménard et al. 10.1080/10962247.2016.1177620
- The impacts of background error covariance on particulate matter assimilation and forecast: An ideal case study with a modal aerosol model over China J. Pang & X. Wang 10.1016/j.scitotenv.2021.147417
- Background error statistics for aerosol variables from WRF/Chem predictions in Southern California Z. Zang et al. 10.1007/s13143-015-0063-8
- Background error covariance iterative updating with invariant observation measures for data assimilation S. Cheng et al. 10.1007/s00477-019-01743-6
- The impact of model resolution on simulated ambient air quality and associated human exposure K. Ridder et al. 10.1016/S0187-6236(14)70038-4
- Monthly top‐down NOx emissions for China (2005–2012): A hybrid inversion method and trend analysis Z. Qu et al. 10.1002/2016JD025852
- Global and Brazilian Carbon Response to El Niño Modoki 2011–2010 K. Bowman et al. 10.1002/2016EA000204
- Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO<sub>2</sub> retrievals H. Wang et al. 10.5194/acp-19-12067-2019
- Sensitivity of top-down CO source estimates to the modeled vertical structure in atmospheric CO Z. Jiang et al. 10.5194/acp-15-1521-2015
- Variational data assimilation for the optimized ozone initial state and the short-time forecasting S. Park et al. 10.5194/acp-16-3631-2016
- A Novel Method for Regional Short-Term Forecasting of Water Level Z. Tu et al. 10.3390/w13060820
- A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation K. Singh et al. 10.1137/120884523
- Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals Z. Jiang et al. 10.1002/jgrd.50216
- Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor K. Wells et al. 10.5194/acp-14-2555-2014
- Regional data assimilation of multi-spectral MOPITT observations of CO over North America Z. Jiang et al. 10.5194/acp-15-6801-2015
- Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation V. Yadav & A. Michalak 10.5194/gmd-6-583-2013
- Error covariance tuning in variational data assimilation: application to an operating hydrological model S. Cheng et al. 10.1007/s00477-020-01933-7
- Chemical Data Assimilation—An Overview A. Sandu & T. Chai 10.3390/atmos2030426
- Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT Z. Jiang et al. 10.5194/acp-15-99-2015
- Improved analysis‐error covariance matrix for high‐dimensional variational inversions: application to source estimation using a 3D atmospheric transport model N. Bousserez et al. 10.1002/qj.2495
- Optimal and scalable methods to approximate the solutions of large‐scale Bayesian problems: theory and application to atmospheric inversion and data assimilation N. Bousserez & D. Henze 10.1002/qj.3209
- Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model H. Ye et al. 10.1016/j.atmosres.2021.105877
- Enhancing water level prediction through model residual correction based on Chaos theory and Kriging X. Wang & V. Babovic 10.1002/fld.3883
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0) J. Haussaire & M. Bocquet 10.5194/gmd-9-393-2016
- Structure of forecast error covariance in coupled atmosphere–chemistry data assimilation S. Park et al. 10.5194/gmd-8-1315-2015
- Impacts of midlatitude precursor emissions and local photochemistry on ozone abundances in the Arctic T. Walker et al. 10.1029/2011JD016370
30 citations as recorded by crossref.
- Network design for quantifying urban CO<sub>2</sub> emissions: assessing trade-offs between precision and network density A. Turner et al. 10.5194/acp-16-13465-2016
- Improved western U.S. background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations M. Huang et al. 10.1002/2014JD022993
- Background error covariance with balance constraints for aerosol species and applications in variational data assimilation Z. Zang et al. 10.5194/gmd-9-2623-2016
- Profiling tropospheric CO<sub>2</sub> using Aura TES and TCCON instruments L. Kuai et al. 10.5194/amt-6-63-2013
- Development of a variational flux inversion system (INVICAT v1.0) using the TOMCAT chemical transport model C. Wilson et al. 10.5194/gmd-7-2485-2014
- A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada R. Ménard et al. 10.1080/10962247.2016.1177620
- The impacts of background error covariance on particulate matter assimilation and forecast: An ideal case study with a modal aerosol model over China J. Pang & X. Wang 10.1016/j.scitotenv.2021.147417
- Background error statistics for aerosol variables from WRF/Chem predictions in Southern California Z. Zang et al. 10.1007/s13143-015-0063-8
- Background error covariance iterative updating with invariant observation measures for data assimilation S. Cheng et al. 10.1007/s00477-019-01743-6
- The impact of model resolution on simulated ambient air quality and associated human exposure K. Ridder et al. 10.1016/S0187-6236(14)70038-4
- Monthly top‐down NOx emissions for China (2005–2012): A hybrid inversion method and trend analysis Z. Qu et al. 10.1002/2016JD025852
- Global and Brazilian Carbon Response to El Niño Modoki 2011–2010 K. Bowman et al. 10.1002/2016EA000204
- Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO<sub>2</sub> retrievals H. Wang et al. 10.5194/acp-19-12067-2019
- Sensitivity of top-down CO source estimates to the modeled vertical structure in atmospheric CO Z. Jiang et al. 10.5194/acp-15-1521-2015
- Variational data assimilation for the optimized ozone initial state and the short-time forecasting S. Park et al. 10.5194/acp-16-3631-2016
- A Novel Method for Regional Short-Term Forecasting of Water Level Z. Tu et al. 10.3390/w13060820
- A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation K. Singh et al. 10.1137/120884523
- Impact of model errors in convective transport on CO source estimates inferred from MOPITT CO retrievals Z. Jiang et al. 10.1002/jgrd.50216
- Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor K. Wells et al. 10.5194/acp-14-2555-2014
- Regional data assimilation of multi-spectral MOPITT observations of CO over North America Z. Jiang et al. 10.5194/acp-15-6801-2015
- Improving computational efficiency in large linear inverse problems: an example from carbon dioxide flux estimation V. Yadav & A. Michalak 10.5194/gmd-6-583-2013
- Error covariance tuning in variational data assimilation: application to an operating hydrological model S. Cheng et al. 10.1007/s00477-020-01933-7
- Chemical Data Assimilation—An Overview A. Sandu & T. Chai 10.3390/atmos2030426
- Constraints on Asian ozone using Aura TES, OMI and Terra MOPITT Z. Jiang et al. 10.5194/acp-15-99-2015
- Improved analysis‐error covariance matrix for high‐dimensional variational inversions: application to source estimation using a 3D atmospheric transport model N. Bousserez et al. 10.1002/qj.2495
- Optimal and scalable methods to approximate the solutions of large‐scale Bayesian problems: theory and application to atmospheric inversion and data assimilation N. Bousserez & D. Henze 10.1002/qj.3209
- Impact of CALIPSO profile data assimilation on 3-D aerosol improvement in a size-resolved aerosol model H. Ye et al. 10.1016/j.atmosres.2021.105877
- Enhancing water level prediction through model residual correction based on Chaos theory and Kriging X. Wang & V. Babovic 10.1002/fld.3883
- Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical models? Z. Tan et al. 10.5194/acp-16-12649-2016
- A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0) J. Haussaire & M. Bocquet 10.5194/gmd-9-393-2016
2 citations as recorded by crossref.
Saved (final revised paper)
Latest update: 15 Jan 2025