Chen, P. J., Feng, Y. R., Meng, W. G., Wen, Q. S., Pan, N., and Dai, G. F.: A correction method of hourly precipitation forecast based on convolutional neural network, Meteorol. Mon., 47, 60–70,
https://doi.org/10.7519/j.issn.1000-0526.2021.01.006, 2021.
a
Chen, Y., Huang, G., Wang, Y., Tao, W., Tian, Q., Yang, K., Zheng, J., and He, H.: Improving the heavy rainfall forecasting using a weighted deep learning model, Front. Environ. Sci., 11,
https://doi.org/10.3389/fenvs.2023.1116672, 2023.
a
Dai, K., Zhu, Y., and Bi, B.: The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system, Acta Meteorol. Sin., 76, 493–510,
https://doi.org/10.11676/qxxb2018.015, 2018.
a
Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Carver, R., Andrychowicz, M., Hickey, J., Bell, A., and Kalchbrenner, N.: Deep Learning for Twelve Hour Precipitation Forecasts, Nat. Commun., 13, 5145,
https://doi.org/10.1038/s41467-022-32483-x, 2022.
a
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.: Generative Adversarial Networks, in: Advances in Neural Information Processing Systems 27 (NIPS 2014), edited by: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K. Q., Curran Associates, Inc., Red Hook, NY, USA,
https://papers.nips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html (last access: 2 December 2025), 2014.
a,
b
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A.: Improved Training of Wasserstein GANs, in: Advances in Neural Information Processing Systems 30 (NIPS 2017), edited by: Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., Curran Associates, Inc., Red Hook, NY, USA,
https://papers.nips.cc/paper_files/paper/2017/hash/892c3b1c6dccd52936e27cbd0ff683d6-Abstract.html (last access: 2 December 2025), 2017. a
Harris, L., McRae, A. T. T., Chantry, M., Dueben, P. D., and Palmer, T. N.: A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts, J. Adv. Model. Earth Syst., 14, e2022MS003120,
https://doi.org/10.1029/2022MS003120, 2022.
a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016,
https://doi.org/10.1109/CVPR.2016.90, 2016.
a
Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E.: Squeeze-and-Excitation Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018,
https://doi.org/10.1109/CVPR.2018.00745, 2018.
a
Ioffe, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Proceedings of Machine Learning Research, 37, 448–456,
https://proceedings.mlr.press/v37/ioffe15.html (last access: 2 December 2025), 2015. a
Kim, T., Ho, N., Kim, D., and Yun, S.-Y.: Benchmark Dataset for Precipitation Forecasting by Post-Processing the Numerical Weather Prediction, arXiv [preprint],
https://doi.org/10.48550/arXiv.2210.02797, 2022.
a
Leinonen, J., Nerini, D., and Berne, A.: Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields With a Generative Adversarial Network, IEEE T. Geosci. Remote, 59, 7211–7223,
https://doi.org/10.1109/TGRS.2020.3032790, 2021.
a
Pan, Y., Gu, J., Yu, J., Shen, Y., Shi, C., and Zhou, Z.: Test of merging methods for multi-source observed precipitation products at high resolution over China, Acta Meteorol. Sin., 76, 755–766,
https://doi.org/10.11676/qxxb2018.034, 2018.
a
Price, I. and Rasp, S.: Increasing the accuracy and resolution of precipitation forecasts using deep generative models, Proceedings of Machine Learning Research, 151, 10 555–10 571,
https://proceedings.mlr.press/v151/price22a/price22a.pdf (last access: 2 December 2025), 2022.
a,
b
Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M., Athanassiadou, M., Kashem, S., Madge, S., Prudden, R., Mandhane, A., Clark, A., Brock, A., Simonyan, K., Hadsell, R., Robinson, N., Clancy, E., Arribas, A., and Mohamed, S.: Skillful Precipitation Nowcasting Using Deep Generative Models of Radar, Nature, 597, 672–677,
https://doi.org/10.1038/s41586-021-03854-z, 2021.
a
Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon. Weather Rev., 136, 78–97,
https://doi.org/10.1175/2007MWR2123.1, 2008.
a
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science, 9351, 234–241, Springer, Cham,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015.
a
Shen, X., Wang, J., Li, Z., Chne, D., and Gong, J.: China's independent and innovation development of numerical weather prediction, Acta Meteorol. Sin., 78, 451–476,
https://doi.org/10.11676/qxxb2020.030, 2020.
a
Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., kin Wong, W., and chun Woo, W.: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting, arXiv [preprint],
https://doi.org/10.48550/arXiv.1506.04214, 2015.
a
Singh, A. K., Albert, A., and White, B.: Downscaling Numerical Weather Models with GANs, in: AGU Fall Meeting Abstracts, 2019, GC43D–1357, AGU,
https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/496182 (last access: 3 December 2025), 2019. a
Sønderby, C. K., Espeholt, L., Heek, J., Dehghani, M., Oliver, A., Salimans, T., Agrawal, S., Hickey, J., and Kalchbrenner, N.: MetNet: A Neural Weather Model for Precipitation Forecasting, arXiv [preprint],
https://doi.org/10.48550/arXiv.2003.12140, 2020.
a
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014. a
Sun, D., Huang, W., Yang, Z., Luo, Y., Luo, J., Wright, J. S., Fu, H., and Wang, B.: Deep Learning Improves GFS Wintertime Precipitation Forecast Over Southeastern China, Geophys. Res. Lett., 50, e2023GL104406,
https://doi.org/10.1029/2023GL104406, 2023.
a
Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker, D. M., Li, P.-W., Golding, B., Xu, M., and Pinto, J.: Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges, B. Am. Meteorol. Soc., 95, 409–426,
https://doi.org/10.1175/BAMS-D-11-00263.1, 2014.
a
Tan, J., Huang, Q., and Chen, S.: Deep learning model based on multi-scale feature fusion for precipitation nowcasting, Geosci. Model Dev., 17, 53–69,
https://doi.org/10.5194/gmd-17-53-2024, 2024.
a,
b
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Loy, C. C., Qiao, Y., and Tang, X.: ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks, in: The European Conference on Computer Vision Workshops (ECCVW), Lecture Notes in Computer Science, 11133, Springer, Cham, 63–79,
https://doi.org/10.1007/978-3-030-11021-5_5, 2018a.
a
Wang, Y., Gao, Z., Long, M., Wang, J., and Yu, P. S.: PredRNN++: Towards A Resolution of the Deep-in-Time Dilemma in Spatiotemporal Predictive Learning, rXiv [preprint],
https://doi.org/10.48550/arXiv.1804.06300, 2018b.
a
Wang, Z., Simoncelli, E. P., and Bovik, A. C.: Multiscale structural similarity for image quality assessment, in: The 37th Asilomar Conference on Signals, Systems & Computers, vol. 2, 1398–1402,
https://doi.org/10.1109/ACSSC.2003.1292216, 2003.
a
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13, 600–612,
https://doi.org/10.1109/TIP.2003.819861, 2004.
a
Yang, X., Dai, K., and Zhu, Y.: Progress and challenges of deep learning techniques in intelligent grid weather forecast, Acta Meteorol. Sin., 80, 649–667,
https://doi.org/10.11676/qxxb2022.051, 2022.
a
Yin, J., Gao, Z., and Han, W.: Application of a Radar Echo Extrapolation‐Based Deep Learning Method in Strong Convection Nowcasting, Earth Space Sci., 8, e2020EA001621,
https://doi.org/10.1029/2020EA001621, 2021.
a
Zhang, C.-J., Zeng, J., Wang, H.-Y., Ma, L.-M., and Chu, H.: Correction Model for Rainfall Forecasts Using the LSTM with Multiple Meteorological Factors, Meteorol. Appl., 27, e1852,
https://doi.org/10.1002/met.1852, 2020.
a
Zhang, X., Yang, Y., Chen, B., and Huang, W.: Operational Precipitation Forecast Over China Using the Weather Research and Forecasting (WRF) Model at a Gray-Zone Resolution: Impact of Convection Parameterization, Weather Forecast., 36, 915–928,
https://doi.org/10.1175/WAF-D-20-0210.1, 2021.
a
Zhang, Y., Long, M., Chen, K., Xing, L., Jin, R., Jordan, M. I., and Wang, J.: Skilful Nowcasting of Extreme Precipitation with NowcastNet, Nature, 619, 526–532,
https://doi.org/10.1038/s41586-023-06184-4, 2023.
a
Zhou, K., Sun, J., Zheng, Y., and Zhang, Y.: Quantitative Precipitation Forecast Experiment Based on Basic NWP Variables Using Deep Learning, Adv. Atmos. Sci., 39, 1472–1486,
https://doi.org/10.1007/s00376-021-1207-7, 2022.
a
Zuliang, F. and Qi, Z.: Precipitation observation and forecast in North China in 2022 by numerical model and deep learning model, Science Data Bank [data set],
https://doi.org/10.57760/sciencedb.09821, 2024.
a