Articles | Volume 18, issue 22
https://doi.org/10.5194/gmd-18-8679-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8679-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A computationally efficient method to model similar and alternate stratospheric aerosol injection experiments using prescribed aerosols in a lower-complexity version of the same model: a case study using CESM(CAM) and CESM(WACCM)
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Daniel Pflüger
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Simone Lingbeek
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Claudia E. Wieners
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Michiel L. J. Baatsen
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
René R. Wijngaard
Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, the Netherlands
Related authors
Jasper de Jong, Michiel L. J. Baatsen, and Aarnout J. van Delden
EGUsphere, https://doi.org/10.5194/egusphere-2023-1259, https://doi.org/10.5194/egusphere-2023-1259, 2023
Preprint archived
Short summary
Short summary
Tropical cyclones often embed a ring-shaped vorticity tower, instead of a centre maximum. Inspired to identify mechanisms in the conservation of such a vorticity structure, we examined the vorticity budget in a simulation of hurricane Irma (2017) near lifetime-peak intensity. Hurricane Irma persisted as a category five hurricane for three consecutive days. We find that vertical exchange of momentum by diabatic heating compensates the advective vorticity loss and eddy activity plays a minor role.
René R. Wijngaard, Willem Jan van de Berg, Christiaan T. van Dalum, Adam R. Herrington, and Xavier J. Levine
Weather Clim. Dynam., 6, 1241–1266, https://doi.org/10.5194/wcd-6-1241-2025, https://doi.org/10.5194/wcd-6-1241-2025, 2025
Short summary
Short summary
We used the variable-resolution Community Earth System Model to simulate present-day and future Arctic temperature and precipitation extremes using global grids (~111 km) with and without regional refinement (~28 km) and a storyline approach. Refined grids generally perform better for precipitation extremes, while unrefined grids perform better for temperature extremes. Future projections show increases in high temperature and wet precipitation extremes and decreases in low temperature extremes.
Gideon Futerman, Mira Adhikari, Alistair Duffey, Yuanchao Fan, Jessica Gurevitch, Peter Irvine, and Claudia Wieners
Earth Syst. Dynam., 16, 939–978, https://doi.org/10.5194/esd-16-939-2025, https://doi.org/10.5194/esd-16-939-2025, 2025
Short summary
Short summary
This review assesses the interaction of solar radiation modification (SRM), a technology to reduce the impacts of climate change by reflecting sunlight and earth system tipping elements. We find that SRM at least partially reduces the risk of hitting most (9 out of 15) of the tipping points we studied relative to the same emission pathway and did not overall worsen the risk for any. Uncertainties for all tipping elements studied were high, so we also lay out suggestions for future research.
Francesco Guardamagna, Claudia Wieners, and Henk A. Dijkstra
Nonlin. Processes Geophys., 32, 201–224, https://doi.org/10.5194/npg-32-201-2025, https://doi.org/10.5194/npg-32-201-2025, 2025
Short summary
Short summary
Artificial intelligence (AI) has recently shown promising results in ENSO (El Niño–Southern Oscillation) forecasting, outperforming traditional models. Yet AI models deliver accurate predictions without showing the underlying mechanisms. Our study examines a specific AI model, the reservoir computer (RC). Our results show that the RC is less sensitive to initial perturbations than the traditional Zebiak–Cane (ZC) model. This reduced sensitivity can explain the RC's superior skills.
Jonna van Mourik, Hylke de Vries, and Michiel Baatsen
Weather Clim. Dynam., 6, 413–429, https://doi.org/10.5194/wcd-6-413-2025, https://doi.org/10.5194/wcd-6-413-2025, 2025
Short summary
Short summary
Atmospheric blocking events are quasi-stationary high-pressure areas with large influences on our weather. In this study, we show the wide variety of zonal velocities possible for atmospheric blocking under the most used blocking indices. These include not only stationary blocks, but also eastward- and westward-moving blocks. These respective moving blocks are found to have different characteristics in size and location and have different impacts on our surface temperatures.
Marjolein Ribberink, Hylke de Vries, Nadia Bloemendaal, Michiel Baatsen, and Erik van Meijgaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-218, https://doi.org/10.5194/egusphere-2025-218, 2025
Short summary
Short summary
Hurricane Ophelia of October 2017 is a rare example of a strong post-tropical cyclone impacting Europe, an event that is expected to occur more frequently as our climate warms. This study examines the changes in structure, behaviour, and extratropical transition of Hurricane Ophelia under alternate climate forcing using a regional model. We find that in warmer climates the storm becomes stronger, larger, and maintains the characteristics of a tropical cyclone for longer than in cooler climates.
Dennis H. A. Vermeulen, Michiel L. J. Baatsen, and Anna S. von der Heydt
Clim. Past, 21, 95–114, https://doi.org/10.5194/cp-21-95-2025, https://doi.org/10.5194/cp-21-95-2025, 2025
Short summary
Short summary
Late Eocene summers, 34 million years ago, were hot on Antarctica, with temperatures up to 30 °C. We also know that during this period the first Antarctic ice sheet formed. Since climate models do not show the transition from this warm climate to ice sheet formation accurately, we imposed regional ice sheets onto the continent in a realistic climate and show that these ice sheets do not melt away. This suggests that the initiation of ice sheet growth might have happened during warmer periods.
Claudia Elisabeth Wieners and Guðmundur Hálfdanarson
Nat. Hazards Earth Syst. Sci., 24, 2971–2994, https://doi.org/10.5194/nhess-24-2971-2024, https://doi.org/10.5194/nhess-24-2971-2024, 2024
Short summary
Short summary
After the 1783 Laki eruption, excess mortality in Iceland was one-sixth of the population, traditionally explained by famine due to livestock loss. Since 1970, it has been suggested that 1) fluorine poisoning may have contributed to mortality in Iceland and 2) air pollution might have caused excess deaths in both Iceland and Europe. Reviewing contemporary Icelandic demographic data, air pollution simulations, and medical records on fluorosis, we show that evidence for both hypotheses is weak.
Xavier J. Levine, Ryan S. Williams, Gareth Marshall, Andrew Orr, Lise Seland Graff, Dörthe Handorf, Alexey Karpechko, Raphael Köhler, René R. Wijngaard, Nadine Johnston, Hanna Lee, Lars Nieradzik, and Priscilla A. Mooney
Earth Syst. Dynam., 15, 1161–1177, https://doi.org/10.5194/esd-15-1161-2024, https://doi.org/10.5194/esd-15-1161-2024, 2024
Short summary
Short summary
While the most recent climate projections agree that the Arctic is warming, differences remain in how much and in other climate variables such as precipitation. This presents a challenge for stakeholders who need to develop mitigation and adaptation strategies. We tackle this problem by using the storyline approach to generate four plausible and actionable realisations of end-of-century climate change for the Arctic, spanning its most likely range of variability.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Frank M. Selten, and Henk A. Dijkstra
Earth Syst. Dynam., 15, 1037–1054, https://doi.org/10.5194/esd-15-1037-2024, https://doi.org/10.5194/esd-15-1037-2024, 2024
Short summary
Short summary
We might be able to constrain uncertainty in future climate projections by investigating variations in the climate of the past. In this study, we investigate the interactions of climate variability between the tropical Pacific (El Niño) and the North Pacific in a warm past climate – the mid-Pliocene, a period roughly 3 million years ago. Using model simulations, we find that, although the variability in El Niño was reduced, the variability in the North Pacific atmosphere was not.
Arthur Merlijn Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Aarnout J. van Delden, and Henk A. Dijkstra
Weather Clim. Dynam., 5, 395–417, https://doi.org/10.5194/wcd-5-395-2024, https://doi.org/10.5194/wcd-5-395-2024, 2024
Short summary
Short summary
The mid-Pliocene, a geological period around 3 million years ago, is sometimes considered the best analogue for near-future climate. It saw similar CO2 concentrations to the present-day but also a slightly different geography. In this study, we use climate model simulations and find that the Northern Hemisphere winter responds very differently to increased CO2 or to the mid-Pliocene geography. Our results weaken the potential of the mid-Pliocene as a future climate analogue.
Michiel Baatsen, Peter Bijl, Anna von der Heydt, Appy Sluijs, and Henk Dijkstra
Clim. Past, 20, 77–90, https://doi.org/10.5194/cp-20-77-2024, https://doi.org/10.5194/cp-20-77-2024, 2024
Short summary
Short summary
This work introduces the possibility and consequences of monsoons on Antarctica in the warm Eocene climate. We suggest that such a monsoonal climate can be important to understand conditions in Antarctica prior to large-scale glaciation. We can explain seemingly contradictory indications of ice and vegetation on the continent through regional variability. In addition, we provide a new mechanism through which most of Antarctica remained ice-free through a wide range of global climatic changes.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
René R. Wijngaard, Adam R. Herrington, William H. Lipscomb, Gunter R. Leguy, and Soon-Il An
The Cryosphere, 17, 3803–3828, https://doi.org/10.5194/tc-17-3803-2023, https://doi.org/10.5194/tc-17-3803-2023, 2023
Short summary
Short summary
We evaluate the ability of the Community Earth System Model (CESM2) to simulate cryospheric–hydrological variables, such as glacier surface mass balance (SMB), over High Mountain Asia (HMA) by using a global grid (~111 km) with regional refinement (~7 km) over HMA. Evaluations of two different simulations show that climatological biases are reduced, and glacier SMB is improved (but still too negative) by modifying the snow and glacier model and using an updated glacier cover dataset.
Jasper de Jong, Michiel L. J. Baatsen, and Aarnout J. van Delden
EGUsphere, https://doi.org/10.5194/egusphere-2023-1259, https://doi.org/10.5194/egusphere-2023-1259, 2023
Preprint archived
Short summary
Short summary
Tropical cyclones often embed a ring-shaped vorticity tower, instead of a centre maximum. Inspired to identify mechanisms in the conservation of such a vorticity structure, we examined the vorticity budget in a simulation of hurricane Irma (2017) near lifetime-peak intensity. Hurricane Irma persisted as a category five hurricane for three consecutive days. We find that vertical exchange of momentum by diabatic heating compensates the advective vorticity loss and eddy activity plays a minor role.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Michiel L. J. Baatsen, Anna S. von der Heydt, Michael A. Kliphuis, Arthur M. Oldeman, and Julia E. Weiffenbach
Clim. Past, 18, 657–679, https://doi.org/10.5194/cp-18-657-2022, https://doi.org/10.5194/cp-18-657-2022, 2022
Short summary
Short summary
The Pliocene was a period during which atmospheric CO2 was similar to today (i.e. ~ 400 ppm). We present the results of model simulations carried out within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) using the CESM 1.0.5. We find a climate that is much warmer than today, with augmented polar warming, increased precipitation, and strongly reduced sea ice cover. In addition, several leading modes of variability in temperature show an altered behaviour.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
David K. Hutchinson, Helen K. Coxall, Daniel J. Lunt, Margret Steinthorsdottir, Agatha M. de Boer, Michiel Baatsen, Anna von der Heydt, Matthew Huber, Alan T. Kennedy-Asser, Lutz Kunzmann, Jean-Baptiste Ladant, Caroline H. Lear, Karolin Moraweck, Paul N. Pearson, Emanuela Piga, Matthew J. Pound, Ulrich Salzmann, Howie D. Scher, Willem P. Sijp, Kasia K. Śliwińska, Paul A. Wilson, and Zhongshi Zhang
Clim. Past, 17, 269–315, https://doi.org/10.5194/cp-17-269-2021, https://doi.org/10.5194/cp-17-269-2021, 2021
Short summary
Short summary
The Eocene–Oligocene transition was a major climate cooling event from a largely ice-free world to the first major glaciation of Antarctica, approximately 34 million years ago. This paper reviews observed changes in temperature, CO2 and ice sheets from marine and land-based records at this time. We present a new model–data comparison of this transition and find that CO2-forced cooling provides the best explanation of the observed global temperature changes.
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past, 16, 2573–2597, https://doi.org/10.5194/cp-16-2573-2020, https://doi.org/10.5194/cp-16-2573-2020, 2020
Short summary
Short summary
Warm climates of the deep past have proven to be challenging to reconstruct with the same numerical models used for future predictions. We present results of CESM simulations for the middle to late Eocene (∼ 38 Ma), in which we managed to match the available indications of temperature well. With these results we can now look into regional features and the response to external changes to ultimately better understand the climate when it is in such a warm state.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Cited articles
Bednarz, E. M., Visioni, D., Banerjee, A., Braesicke, P., Kravitz, B., and MacMartin, D. G.: The Overlooked Role of the Stratosphere Under a Solar Constant Reduction, Geophys. Res. Lett., 49, e2022GL098773, https://doi.org/10.1029/2022GL098773, 2022. a
Brody, E., Visioni, D., Bednarz, E. M., Kravitz, B., MacMartin, D. G., Richter, J. H., and Tye, M. R.: Kicking the can down the road: understanding the effects of delaying the deployment of stratospheric aerosol injection, Environ. Res.: Clim., 3, 035011, https://doi.org/10.1088/2752-5295/ad53f3, 2024. a
Danabasoglu, G.: NCAR CESM2-WACCM model output prepared for CMIP6 ScenarioMIP ssp585, Version 20200206, Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.10115, 2019. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Syst., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020. a, b
de Jong, J., Pflüger, D., and Wijngaard, R. R.: JdeJong96/CESM-CAM_SAI, Zenodo [code and data set], https://doi.org/10.5281/zenodo.17265544, 2025a. a, b
de Jong, J., Wijngaard, R. R., Pflüger, D., Wieners, C. E., and Baatsen, M. L. J.: A computationally efficient method to model Stratospheric Aerosol Injection experiments, Utrecht University [code and data set], https://doi.org/10.24416/UU01-F7SGNO, 2025b. a, b
Farley, J., MacMartin, D. G., Visioni, D., and Kravitz, B.: Emulating inconsistencies in stratospheric aerosol injection, Environ. Res.: Clim., 3, 035012, https://doi.org/10.1088/2752-5295/ad519c, 2024. a, b
Futerman, G., Adhikari, M., Duffey, A., Fan, Y., Gurevitch, J., Irvine, P., and Wieners, C.: The interaction of solar radiation modification with Earth system tipping elements, Earth Syst. Dynam., 16, 939–978, https://doi.org/10.5194/esd-16-939-2025, 2025. a
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L., Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter, J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019. a, b, c
Hirasawa, H., Hingmire, D., Singh, H., Rasch, P. J., and Mitra, P.: Effect of Regional Marine Cloud Brightening Interventions on Climate Tipping Elements, Geophys. Res. Lett., 50, e2023GL104314, https://doi.org/10.1029/2023GL104314, 2023. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F, Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The community earth system model: a framework for collaborative research, B. Am. Meteorol. Soc., 94, 1339–1360, 2013. a
Jörimann, A., Sukhodolov, T., Luo, B., Chiodo, G., Mann, G., and Peter, T.: REtrieval Method for optical and physical Aerosol Properties in the stratosphere (REMAPv1), Geosci. Model Dev., 18, 6023–6041, https://doi.org/10.5194/gmd-18-6023-2025, 2025. a
Jüling, A., von der Heydt, A., and Dijkstra, H. A.: Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model, Ocean Sci., 17, 1251–1271, https://doi.org/10.5194/os-17-1251-2021, 2021. a
Kravitz, B., MacMartin, D. G., Leedal, D. T., Rasch, P. J., and Jarvis, A. J.: Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering, Environ. Res. Lett., 9, 044006, https://doi.org/10.1088/1748-9326/9/4/044006, 2014. a
Kravitz, B., MacMartin, D. G., Wang, H., and Rasch, P. J.: Geoengineering as a design problem, Earth Syst. Dynam., 7, 469–497, https://doi.org/10.5194/esd-7-469-2016, 2016. a, b
Kravitz, B., MacMartin, D. G., Mills, M. J., Richter, J. H., Tilmes, S., Lamarque, J.-F., Tribbia, J. J., and Vitt, F.: First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives, J. Geophys. Res.-Atmos., 122, 12616–12634, https://doi.org/10.1002/2017JD026874, 2017. a, b, c, d, e, f, g
Kravitz, B., MacMartin, D. G., Tilmes, S., Richter, J. H., Mills, M. J., Cheng, W., Dagon, K., Glanville, A. S., Lamarque, J.-F., Simpson, I. R., Tribbia, J., and Vitt, F.: Comparing Surface and Stratospheric Impacts of Geoengineering With Different SO2 Injection Strategies, J. Geophys. Res.-Atmos., 124, 7900–7918, https://doi.org/10.1029/2019JD030329, 2019. a
Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., and Rasch, P. J.: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model, Geosci. Model Dev., 9, 505–522, https://doi.org/10.5194/gmd-9-505-2016, 2016. a
Lynch, C., Hartin, C., Bond-Lamberty, B., and Kravitz, B.: An open-access CMIP5 pattern library for temperature and precipitation: description and methodology, Earth Syst. Sci. Data, 9, 281–292, https://doi.org/10.5194/essd-9-281-2017, 2017. a
MacMartin, D. G. and Kravitz, B.: Dynamic climate emulators for solar geoengineering, Atmos. Chem. Phys., 16, 15789–15799, https://doi.org/10.5194/acp-16-15789-2016, 2016. a, b
MacMartin, D. G., Caldeira, K., and Keith, D. W.: Solar geoengineering to limit the rate of temperature change, Philos. T. Roy. Soc. A, 372, 20140134, https://doi.org/10.1098/rsta.2014.0134, 2014. a, b, c
MacMartin, D. G., Wang, W., Kravitz, B., Tilmes, S., Richter, J. H., and Mills, M. J.: Timescale for detecting the climate response to stratospheric aerosol geoengineering, J. Geophys. Res.-Atmos., 124, 1233–1247, https://doi.org/10.1029/2018JD028906, 2019. a
MacMartin, D. G., Visioni, D., Kravitz, B., Richter, J., Felgenhauer, T., Lee, W. R., Morrow, D. R., Parson, E. A., and Sugiyama, M.: Scenarios for modeling solar radiation modification, P. Natl. Acad. Sci. USA, 119, e2202230119, https://doi.org/10.1073/pnas.2202230119, 2022. a
McKay, D. I. A., Staal, A., Abrams, J. F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., Cornell, S. E., Rockström, J., and Lenton, T. M.: Exceeding 1.5 °C global warming could trigger multiple climate tipping points, Science, 377, eabn7950, https://doi.org/10.1126/science.abn7950, 2022. a
Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R.: A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions, Atmos. Chem. Phys., 17, 7213–7228, https://doi.org/10.5194/acp-17-7213-2017, 2017. a
Muñoz-Sánchez, R., Bastien-Olvera, B. A., Calderón, O., Estrada Porrúa, F., and Altamirano, M.: GeoMIP-Pattern – a pattern scaling dataset for efficient generation of custom geoengineering scenarios, Sci. Data, 12, 1343, https://doi.org/10.1038/s41597-025-05496-6, 2025. a
National Academies of Sciences and Medicine: Reflecting Sunlight: Recommendations for Solar Geoengineering Research and Research Governance, The National Academies Press, Washington, D.C., ISBN 978-0-309-67605-2, https://doi.org/10.17226/25762, 2021. a
Niemeier, U. and Timmreck, C.: What is the limit of climate engineering by stratospheric injection of SO2?, Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, 2015. a
Niemeier, U., Schmidt, H., and Timmreck, C.: The dependency of geoengineered sulfate aerosol on the emission strategy, Atmos. Sci. Lett., 12, 189–194, https://doi.org/10.1002/asl.304, 2011. a
Pflüger, D., Wieners, C. E., van Kampenhout, L., Wijngaard, R. R., and Dijkstra, H. A.: Flawed Emergency Intervention: Slow Ocean Response to Abrupt Stratospheric Aerosol Injection, Geophys. Res. Lett., 51, e2023GL106132, https://doi.org/10.1029/2023GL106132, 2024. a, b, c, d
Richter, J. H., Tilmes, S., Mills, M. J., Tribbia, J. J., Kravitz, B., MacMartin, D. G., Vitt, F., and Lamarque, J.-F.: Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO2 Injections, J. Geophys. Res.-Atmos., 122, 12557–12573, https://doi.org/10.1002/2017JD026912, 2017. a
Richter, J. H., Visioni, D., MacMartin, D. G., Bailey, D. A., Rosenbloom, N., Dobbins, B., Lee, W. R., Tye, M., and Lamarque, J.-F.: Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations, Geosci. Model Dev., 15, 8221–8243, https://doi.org/10.5194/gmd-15-8221-2022, 2022. a
Roberts, M., Camp, J., Seddon, J., Vidale, P., Hodges, K., Vannière, B., Mecking, J., Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L., Chauvin, F., Terray, L., Valcke, S., Moine, M.-P., Putrasahan, D., Roberts, C., Senan, R., Zarzycki, C., and Ullrich, P.: Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multi-model ensemble, J. Climate, 33, https://doi.org/10.1175/JCLI-D-19-0639.1, 2020. a
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., and Plattner, G.-K.: Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming, Science, 327, 1219–1223, https://doi.org/10.1126/science.1182488, 2010. a
Tilmes, S., Müller, R., and Salawitch, R.: The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes, Science, 320, 1201–1204, https://doi.org/10.1126/science.1153966, 2008. a
Tilmes, S., Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B., Lamarque, J.-F., Pitari, G., and English, J. M.: A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models, Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, 2015. a
Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Mills, M. J., Simpson, I. R., Glanville, A. S., Fasullo, J. T., Phillips, A. S., Lamarque, J.-F., Tribbia, J., Edwards, J., Mickelson, S., and Ghosh, S.: CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project, B. Am. Meteorol. Soc., 99, 2361–2371, https://doi.org/10.1175/BAMS-D-17-0267.1, 2018. a, b, c
Tilmes, S., MacMartin, D. G., Lenaerts, J. T. M., van Kampenhout, L., Muntjewerf, L., Xia, L., Harrison, C. S., Krumhardt, K. M., Mills, M. J., Kravitz, B., and Robock, A.: Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering, Earth Syst. Dynam., 11, 579–601, https://doi.org/10.5194/esd-11-579-2020, 2020. a, b, c, d, e, f, g
Tilmes, S., Richter, J. H., Kravitz, B., MacMartin, D. G., Glanville, A. S., Visioni, D., Kinnison, D. E., and Müller, R.: Sensitivity of Total Column Ozone to Stratospheric Sulfur Injection Strategies, Geophys. Res. Lett., 48, https://doi.org/10.1029/2021gl094058, 2021. a, b
Tilmes, S., Visioni, D., Jones, A., Haywood, J., Séférian, R., Nabat, P., Boucher, O., Bednarz, E. M., and Niemeier, U.: Stratospheric ozone response to sulfate aerosol and solar dimming climate interventions based on the G6 Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 22, 4557–4579, https://doi.org/10.5194/acp-22-4557-2022, 2022. a, b
Tilmes, S., Bednarz, E. M., Jörimann, A., Visioni, D., Kinnison, D. E., Chiodo, G., and Plummer, D.: Stratospheric Aerosol Intervention experiment for the Chemistry–Climate Model Initiative, Atmos. Chem. Phys., 25, 6001–6023, https://doi.org/10.5194/acp-25-6001-2025, 2025. a
van Westen, R., Dijkstra, H. A., van der Boog, C. G., Katsman, C. A., James, R. K., Bouma, T. J., Kleptsova, O., Klees, R., Riva, R. E. M., Slobbe, D. C., Zijlema, M., and Pietrzak, J. D.: Ocean model resolution dependence of Caribbean sea-level projections, Sci. Rep., 10, 14599, https://doi.org/10.1038/s41598-020-71563-0, 2020. a
van Westen, R. M. and Dijkstra, H. A.: Ocean eddies strongly affect global mean sea-level projections, Sci. Adv., 7, eabf1674, https://doi.org/10.1126/sciadv.abf1674, 2021. a
Visioni, D., MacMartin, D. G., Kravitz, B., Boucher, O., Jones, A., Lurton, T., Martine, M., Mills, M. J., Nabat, P., Niemeier, U., Séférian, R., and Tilmes, S.: Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6 sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations, Atmos. Chem. Phys., 21, 10039–10063, https://doi.org/10.5194/acp-21-10039-2021, 2021. a, b, c
Visioni, D., Kravitz, B., Robock, A., Tilmes, S., Haywood, J., Boucher, O., Lawrence, M., Irvine, P., Niemeier, U., Xia, L., Chiodo, G., Lennard, C., Watanabe, S., Moore, J. C., and Muri, H.: Opinion: The scientific and community-building roles of the Geoengineering Model Intercomparison Project (GeoMIP) – past, present, and future, Atmos. Chem. Phys., 23, 5149–5176, https://doi.org/10.5194/acp-23-5149-2023, 2023. a
World Meteorological Organization: State of the Global Climate 2024, Tech. Rep. WMO-No. 1368, World Meteorological Organization, Geneva, Switzerland, ISBN 978-92-63-11368-9, https://library.wmo.int/idurl/4/69455 (last access: 4 October 2025), 2025. a
Xia, L., Nowack, P. J., Tilmes, S., and Robock, A.: Impacts of stratospheric sulfate geoengineering on tropospheric ozone, Atmos. Chem. Phys., 17, 11913–11928, https://doi.org/10.5194/acp-17-11913-2017, 2017. a, b
Short summary
Injection of reflective sulfate aerosols high in the atmosphere is a proposed method to mitigate global warming. Climate simulations with injection are more expensive than standard future projections. We propose a method that dynamically scales the forcing fields based on pre-existing full-complexity data. This opens up possibilities for ensemble generation, new scenarios and higher resolution runs. We show that our method works for multiple model versions, injection scenarios and resolutions.
Injection of reflective sulfate aerosols high in the atmosphere is a proposed method to mitigate...