Articles | Volume 18, issue 21
https://doi.org/10.5194/gmd-18-8253-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-8253-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stripe patterns in wind forecasts induced by physics-dynamics coupling on a staggered grid in CMA-GFS 3.0
State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing, 10081, China
CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, 10081, China
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 10081, China
Yong Su
State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing, 10081, China
CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, 10081, China
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 10081, China
State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing, 10081, China
CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, 10081, China
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 10081, China
Zhanshan Ma
State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing, 10081, China
CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, 10081, China
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 10081, China
Xueshun Shen
CORRESPONDING AUTHOR
State Key Laboratory of Severe Weather Meteorological Science and Technology, Beijing, 10081, China
CMA Earth System Modeling and Prediction Centre (CEMC), Beijing, 10081, China
Key Laboratory of Earth System Modeling and Prediction, China Meteorological Administration, Beijing, 10081, China
Related authors
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss., 10.5194/gmd-2020-439, 10.5194/gmd-2020-439, 2021
Preprint withdrawn
Short summary
Short summary
Hailstorm is one of the severe disaster weathers for agricultural countries. Hail microphysics processes have been added in the double-moment microphysics scheme in the operational model GRAPES_Meso and a severe squall line hailstorm is simulated. Compared with the observation, simulation results can capture the basic character of this squall line hailstorm. Results imply the ability of high-resolution GRAPES_Meso on forecasting hailstorm.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, 10.5194/gmd-14-205-2021, 10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Lilong Zhou, Wei Xue, and Xueshun Shen
Geosci. Model Dev., 18, 8175–8201, 10.5194/gmd-18-8175-2025, 10.5194/gmd-18-8175-2025, 2025
Short summary
Short summary
This study develops a novel physics-based weather prediction model using artificial intelligence development platform, achieving high accuracy while maintaining strict physical conservation laws. Our algorithms are optimized for modern super computers, enabling efficient large-scale weather simulations. A key innovation is the model's inherent differentiable nature, allowing seamless integration with AI systems to enhance predictive capabilities through machine learning techniques.
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, 10.5194/gmd-18-4855-2025, 10.5194/gmd-18-4855-2025, 2025
Short summary
Short summary
In order to investigate the feedbacks of chemical data assimilation on meteorological forecasts, we developed a strongly coupled aerosol–meteorology four-dimensional variational (4D-Var) assimilation system, CMA-GFS-AERO 4D-Var, based on the framework of the incremental analysis scheme of the China Meteorological Administration Global Forecasting System (CMA-GFS) operational global numerical weather model. The results show that assimilating BC (black carbon) observations can generate analysis increments not only for BC but also for atmospheric variables.
Xuan Wang, Lei Bi, Hong Wang, Yaqiang Wang, Wei Han, Xueshun Shen, and Xiaoye Zhang
Geosci. Model Dev., 18, 117–139, 10.5194/gmd-18-117-2025, 10.5194/gmd-18-117-2025, 2025
Short summary
Short summary
The Artificial-Intelligence-based Nonspherical Aerosol Optical Scheme (AI-NAOS) was developed to improve the estimation of the aerosol direct radiation effect and was coupled online with a chemical weather model. The AI-NAOS scheme considers black carbon as fractal aggregates and soil dust as super-spheroids, encapsulated with hygroscopic aerosols. Real-case simulations emphasize the necessity of accurately representing nonspherical and inhomogeneous aerosols in chemical weather models.
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, 10.5194/gmd-16-2833-2023, 10.5194/gmd-16-2833-2023, 2023
Short summary
Short summary
C-Coupler3.0 is an integrated coupler infrastructure with new features, i.e. a series of parallel-optimization technologies, a common halo-exchange library, a common module-integration framework, a common framework for conveniently developing a weakly coupled ensemble data assimilation system, and a common framework for flexibly inputting and outputting fields in parallel. It is able to handle coupling under much finer resolutions (e.g. more than 100 million horizontal grid cells).
Zhe Li, Qijun Liu, Xiaomin Chen, Zhanshan Ma, Jiong Chen, and Yuan Jiang
Geosci. Model Dev. Discuss., 10.5194/gmd-2020-439, 10.5194/gmd-2020-439, 2021
Preprint withdrawn
Short summary
Short summary
Hailstorm is one of the severe disaster weathers for agricultural countries. Hail microphysics processes have been added in the double-moment microphysics scheme in the operational model GRAPES_Meso and a severe squall line hailstorm is simulated. Compared with the observation, simulation results can capture the basic character of this squall line hailstorm. Results imply the ability of high-resolution GRAPES_Meso on forecasting hailstorm.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, 10.5194/gmd-14-205-2021, 10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Cited articles
Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: Two dimensional incompressible flow. Part I, J. Comput. Phys., 1, 119–143, https://doi.org/10.1016/0021-9991(66)90015-5, 1966.
Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, General circulation models of the atmosphere, Academic Press, Inc., 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.
Batteen, M. L. and Han, Y.-J.: On the computational noise of finite-difference schemes used in ocean models, Tellus, 33, 387–396, https://doi.org/10.1111/j.2153-3490.1981.tb01761.x, 1981.
Bauer, P., Thorpe, A, and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Beljaars, A., Brown, A., and Wood, N.: A new parameterization of turbulent orographic form drag, Q. J. R. Meteorol. Soc., 130, 1327–1347, https://doi.org/10.1256/qj.03.73, 2004.
Blackadar, A. K.: Boundary layer wind maxima and their significance for the growth of nocturnal inversions, Bull. Amer. Meteor. Soc., 38, 283–290, https://doi.org/10.1175/1520-0477-38.5.283, 1957.
Charney, J. G. and Phillips, N. A.: Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows, Journal of Meteorology, 10, 71–99, https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2, 1953.
Chen, D. H., Xue, J. S., Yang, X. S., Zhang, H. L., Shen, X. S., Hu, J. L., Wang, Y., Ji, L. R., and Chen, J. B.: New generation of multi-scale NWP system (GRAPES): general scientific design, Chinese Science Bulletin, 52, 3433-3445, https://doi.org/10.1007/s11434-008-0494-z, 2008.
Chen, G., Held, I. M., and Robinson, W. A.: Sensitivity of the latitude of the surface westerlies to surface friction, J. Atmos. Sci., 64, 2899–2915, https://doi.org/10.1175/JAS3995.1, 2007.
Chen, J.: CMA-GFS 3.0_code_egusphere-2025-2704, Zenodo [code], https://doi.org/10.5281/zenodo.16516966, 2025.
Chen, J., Ma, Z. S., and Su, Y.: Boundary layer coupling to Charney–Phillips vertical grid in GRAPES model, J. Appl. Meteor. Sci., 28, 52–60, https://doi.org/10.11898/1001-7313.20170105, 2017 (in Chinese).
Chen, J., Ma, Z. S., Li, Z., Shen, X. S., Su, Y., Chen, Q. Y., and Liu, Y. Z.: Vertical diffusion and cloud scheme coupling to the Charney–Phillips vertical grid in GRAPES global forecast system, Quart. J. Roy. Meteor. Soc., 146, 2191–2204, https://doi.org/10.1002/qj.3787, 2020.
Chen, J., Su, Y., Li, Z., Ma, Z. S., and Shen, X. S.: Replication data: Stripe Patterns in Wind Forecasts Induced by Physics-Dynamics Coupling on a Staggered Grid in CMA-GFS 3.0, Zenodo [data set], https://doi.org/10.5281/zenodo.15597504, 2025.
Chen, Q. Y., Shen, X. S., Sun, J., and Liu, K.: Momentum budget diagnosis and the parameterization of subgrid-scale orographic drag in global GRAPES, J. Meteor. Res., 30, 771–788, https://doi.org/10.1007/s13351-016-6033-y, 2016.
Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Wea. Rev., 126, 1373–1395, https://doi.org/10.1175/1520-0493(1998)126%3C1373:TOCMGE%3E2.0.CO;2, 1998.
Dai, Y. J., Zeng, X. B., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G. Y., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.: The common land model, Bull. Amer. Meteor. Soc., 84, 1013–1023, https://doi.org/10.1175/BAMS-84-8-1013, 2003.
Durran, D. R.: Numerical Methods for Fluid Dynamics: With Applications to Geophysics, 2nd edn., Springer, https://doi.org/10.1007/978-1-4419-6412-0, 2010.
Gross, M., Malardel, S., Jablonowski, C., and Wood, N.: Bridging the (knowledge) gap between physics and dynamics, Bull. Amer. Meteor. Soc., 97, 137–142, https://doi.org/10.1175/BAMS-D-15-00103.1, 2016.
Gross, M., Wan, H., Rasch, P. J., Caldwell, P. M., Williamson, D. L., Klocke, D., Jablonowski, C., Thatcher, D. R., Wood, N., Cullen, M., Beare, B., Willett, M., Lemarié, F., Blayo, E., Malardel, S., Termonia, P., Gassmann, A., Lauritzen, P. H., Johansen, H., Zarzycki, C. M., Sakaguchi, K. and Leung, R.: Physics–dynamics coupling in weather, climate, and Earth system models: Challenges and recent progress, Mon. Wea. Rev., 146, 3505–3544, https://doi.org/10.1175/MWR-D-17-0345.1, 2018.
Han, J. and Pan, H.-L.: Revision of convection and vertical diffusion schemes in the NCEP global forecast system, Wea. Forecasting, 26, 520–533, https://doi.org/10.1175/WAF-D-10-05038.1, 2011.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Kim, Y.-J. and Doyle, J. D.: Extension of an orographic-drag parametrization scheme to incorporate orographic anisotropy and flow blocking, Q. J. R. Meteorol. Soc., 131, 1893–1921, https://doi.org/10.1256/qj.04.160, 2005.
Kim, Y.-J., Eckermann, S. D., and Chun, H.-Y.: An overview of the past, present and future of gravity-wave drag parameterization for numerical climate and weather prediction models, Atmos.-Ocean, 41, 65–98, https://doi.org/10.3137/ao.410105, 2003.
Lorenz, E. N.: Energy and numerical weather prediction, Tellus, 12, 364–373, https://doi.org/10.1111/j.2153-3490.1960.tb01323.x, 1960.
Ma, Z. S., Liu, Q. J., Zhao, C. F., Shen, X. S., Wang, Y., Jiang, J. H., Li, Z., and Yung, Y.: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system, J. Adv. Model. Earth Syst., 10, 652–667, https://doi.org/10.1002/2017MS001234, 2018.
McFarlane, N. A.: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 44, 1775–1800, https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2, 1987.
Mesinger, F. and Arakawa, A.: Numerical methods used in atmospheric models, Report, Global Atmospheric Research Programme (GARP), https://oceanrep.geomar.de/id/eprint/40278/ (last access: 3 June 2025), 1976.
Morcrette, J.-J., Barker, H. W., Cole, J. N. S., Iacono, M. J., and Pincus, R.: Impact of a new radiation package, McRad, in the ECMWF Integrated Forecast System, Mon. Wea. Rev., 136, 4773–4798, https://doi.org/10.1175/2008MWR2363.1, 2008.
Pincus, R., Barker, H. W., and Morcrette, J.-J.: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, 4376, https://doi.org/10.1029/2002JD003322, 2003.
Randall, D. A.: Geostrophic adjustment and the finite-difference shallow-water equations, Mon. Weather Rev., 122, 1371–1377, https://doi.org/10.1175/1520-0493(1994)122<1371:GAATFD>2.0.CO;2, 1994.
Raymond, W. H. and Garder, A.: A spatial filter for use in finite area calculations, Mon. Weather Rev., 116, 209–222, https://doi.org/10.1175/1520-0493(1988)116%3C0209:ASFFUI%3E2.0.CO;2, 1988.
Robinson, W. A.: Dissipation dependence of the jet latitude, J. Clim., 10, 176–182, https://doi.org/10.1175/1520-0442(1997)010<0176:DDOTJL>2.0.CO;2, 1997.
Sandu, I., Bechtold, P., Beljaars, A., Bozzo, A., Pithan, F., Shepherd, T. G., and Zadra, A.: Impacts of parameterized orographic drag on the Northern Hemisphere winter circulation, J. Adv. Model. Earth Syst., 8, 196–211, https://doi.org/10.1002/2015MS000564, 2016.
Sela, J. G.: The derivation of sigma-pressure hybrid coordinate semi-Lagrangian model equations for the NCEP Global Forecast System, NOAA Technical Report NWS 34, National Centers for Environmental Prediction, https://repository.library.noaa.gov/view/noaa/6971 (last access: 3 June 2025), 2010.
Shapiro, R.: Smoothing, filter, and boundary effect, Review of Geophysics and Space Physics, 8, 359–387, https://doi.org/10.1029/RG008i002p00359, 1970.
Shapiro, R.: Linear filtering, Math. Comp., 29, 1094–1097, https://doi.org/10.2307/2005747, 1975.
Shen, X. S., Wang, J. J., Li, Z. C., Chen, D. H., and Gong, J. D: Research and Operational Development of Numerical Weather Prediction in China, J. Meteor. Res., 34, 675–698, https://doi.org/10.1007/s13351-020-9847-6, 2020.
Shen, X. S., Su, Y., Zhang, H. L., and Hu, J. L.: New Version of the CMA-GFS Dynamical Core Based on the Predictor–Corrector Time Integration Scheme, J. Meteor. Res., 37, 273–285, https://doi.org/10.1007/s13351-023-3002-0, 2023.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys, 227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Stull, R. B.: An introduction to Boundary layer Meteorology, Kluwer Academic Publishers, https://doi.org/10.1007/978-94-009-3027-8, 1988.
Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper, S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A., Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman, S., Harris, C., Heming, J., Klingaman, N., Levine, R., Manners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C., Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling, A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson, J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017.
Wang, G. H., Chen, F. F., Shen, X., S., and Hu, J., L.: The impact of topography filter processing and horizontal diffusion on precipitation prediction in numerical model, Chinese J. Geophys., 51, 1642–1650, https://doi.org/10.3321/j.issn:0001-5733.2008.06.003, 2008 (in Chinese).
Wurtele, M. G.: On the problem of truncation error, Tellus, 13, 379–391, https://doi.org/10.3402/tellusa.v13i3.9514, 1961.
Xu, W. and Lin, C. A.: A numerical solution of the linear Rayleigh Bernard convection equations with B- and C-grid formulations, Tellus, 45, 193–200, https://doi.org/10.3402/tellusa.v45i3.14869, 1993.
Xue, M.: High-order monotonic numerical diffusion and smoothing, Mon. Weather Rev., 128, 2853–2864, https://doi.org/10.1175/1520-0493(2000)128%3C2853:HOMNDA%3E2.0.CO;2, 2000.
Short summary
Weather forecasts sometimes show high-frequency noise degrading predictions. Our study reveals stripe patterns arise from mismatches between dynamic and physical calculations in models. Simplified experiments demonstrate that adjusting their connection eliminates stripes. This advances numerical weather prediction understanding, aiding forecasters and the public. Our diagnostic methods provide a framework for solving this global meteorological modeling challenge.
Weather forecasts sometimes show high-frequency noise degrading predictions. Our study reveals...