Articles | Volume 18, issue 20
https://doi.org/10.5194/gmd-18-7227-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-7227-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling microplastic dynamics in estuaries: a comprehensive review, challenges, and recommendations
Betty John Kaimathuruthy
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France
Isabel Jalón-Rojas
CORRESPONDING AUTHOR
Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France
Damien Sous
Université de Pau et des Pays de l’Adour, E2S UPPA, SIAME, Anglet, France
Related authors
No articles found.
Damien Sous, Marc Pézérat, Solène Déalbéra, Héloïse Michaud, and Denis Morichon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2285, https://doi.org/10.5194/egusphere-2025-2285, 2025
Short summary
Short summary
The circulation of nearshore water is of primary importance for the health of coastal ecosystems and the coastal hazards, such as erosion. The present study focuses on the role played by bottom friction, which is particularly important in rocky or coral reef areas. Using field observations and numerical simulations, we show that the waves are able to increase the bottom friction and therefore affect the whole circulation and water level dynamics.
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025, https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary
Short summary
This study presents a new global wave model that improves predictions of sea states in tropical areas by using a high-resolution grid and corrected wind fields. The model is validated globally with satellite data and nearshore using in situ data. The model allows for the first time direct comparisons with in situ data collected at 10–30 m water depth, which is very close to shore due to the steep slope usually surrounding volcanic islands.
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025, https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary
Short summary
This study presents a novel modeling approach for understanding microplastic transport in coastal waters. The model accurately replicates experimental data and reveals key transport mechanisms. The findings enhance our knowledge of how microplastics move in nearshore environments, aiding in coastal management and efforts to combat plastic pollution globally.
Cited articles
Al-Zawaidah, H., Kooi, M., Hoitink, T., Vermeulen, B., and Waldschläger, K.: Mapping Microplastic Movement: A Phase Diagram to Predict Nonbuoyant Microplastic Modes of Transport at the Particle Scale, Environ. Sci. Technol., 58, 17979–17989, 2024. a
Amaral-Zettler, L. A., Zettler, E. R., and Mincer, T. J.: Ecology of the plastisphere, Nat. Rev. Microbiol., 18, 139–151, 2020. a
Bagaev, A., Mizyuk, A., Khatmullina, L., Isachenko, I., and Chubarenko, I.: Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion, Sci. Total Environ., 599, 560–571, 2017. a
Ballent, A., Pando, S., Purser, A., Juliano, M. F., and Thomsen, L.: Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon, Biogeosciences, 10, 7957–7970, https://doi.org/10.5194/bg-10-7957-2013, 2013. a
Baudena, A., Ser-Giacomi, E., Jalón-Rojas, I., Galgani, F., and Pedrotti, M.: The streaming of plastic in the Mediterranean Sea. Nat. Commun., 13, 2981, https://doi.org/10.1038/s41467-022-30572-5, 2022. a
Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R., Cole, M., Hooper, T., Lindeque, P. K., Pascoe, C., and Wyles, K. J.: Global ecological, social and economic impacts of marine plastic, Mar. Pollut. Bull., 142, 189–195, 2019. a
Bermúdez, M., Vilas, C., Quintana, R., González-Fernández, D., Cózar, A., and Díez-Minguito, M.: Unravelling spatio-temporal patterns of suspended microplastic concentration in the Natura 2000 Guadalquivir estuary (SW Spain): Observations and model simulations, Mar. Pollut. Bull., 170, 112622, https://doi.org/10.1016/j.marpolbul.2021.112622, 2021. a, b, c, d, e, f, g
Bigdeli, M., Mohammadian, A., Pilechi, A., and Taheri, M.: Lagrangian modeling of marine microplastics fate and transport: The state of the science, J. Mar. Sci. Eng., 10, 481, https://doi.org/10.3390/jmse10040481, 2022. a
Biltcliff-Ward, A., Stead, J. L., and Hudson, M. D.: The estuarine plastics budget: A conceptual model and meta-analysis of microplastic abundance in estuarine systems, Estuar. Coast. Shelf Sci., 275, 107963, https://doi.org/10.1016/j.ecss.2022.107963, 2022. a
Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., Frond, H. D., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes. M., and Rochman, C. M.: Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution, Science, 369, 1515–1518, 2020. a
Burchard, H.: Combined effects of wind, tide, and horizontal density gradients on stratification in estuaries and coastal seas, J. Phys. Oceanogr., 39, 2117–2136, 2009. a
Chernetsky, A. S., Schuttelaars, H. M., and Talke, S. A.: The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries, Ocean Dynam., 60, 1219–1241, 2010. a
Cohen, J. H., Internicola, A. M., Mason, R. A., and Kukulka, T.: Observations and simulations of microplastic debris in a tide, wind, and freshwater-driven estuarine environment: the Delaware Bay, Environ. Sci. Technol., 53, 14204–14211, 2019. a
Conley, K., Clum, A., Deepe, J., Lane, H., and Beckingham, B.: Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year, Water Res. X, 3, 100030, https://doi.org/10.1016/j.wroa.2019.100030, 2019. a
Critchell, K. and Lambrechts, J.: Modelling accumulation of marine plastics in the coastal zone; what are the dominant physical processes?, Estuar. Coast. Shelf Sci., 171, 111–122, 2016. a
Dellino, P., Mele, D., Bonasia, R., Braia, G., La Volpe, L., and Sulpizio, R.: The analysis of the influence of pumice shape on its terminal velocity, Geophys. Res. Lett., 32, L21306, https://doi.org/10.1029/2005GL023954, 2005. a, b, c
Díez-Minguito, M., Bermudez, M., Gago, J., Carretero, O., and Vinas, L.: Observations and idealized modelling of microplastic transport in estuaries: the exemplary case of an upwelling system (Ría de Vigo, NW Spain), Mar. Chem., 222, 103780, https://doi.org/10.1016/j.marchem.2020.103780, 2020. a, b, c, d, e, f, g, h
Dijkstra, Y. M., Brouwer, R. L., Schuttelaars, H. M., and Schramkowski, G. P.: The iFlow modelling framework v2.4: a modular idealized process-based model for flow and transport in estuaries, Geosci. Model Dev., 10, 2691–2713, https://doi.org/10.5194/gmd-10-2691-2017, 2017. a, b, c
Dittmar, S., Ruhl, A. S., Altmann, K., and Jekel, M.: Settling Velocities of Small Microplastic Fragments and Fibers, Environ. Sci. Technol., 58, 6359–6369, 2024. a
Do, T.-K.-A., Huybrechts, N., Jálon-Rojas, I., Tassi, P., and Sottolichio, A.: Three-dimensional numerical modeling of sediment transport in a highly turbid estuary with pronounced seasonal variations, Int. J. Sediment Res., 40, 333–347, https://doi.org/10.1016/j.ijsrc.2024.12.003, 2025. a, b, c, d
Fajardo-Urbina, J. M., Liu, Y., Georgievska, S., Gräwe, U., Clercx, H. J., Gerkema, T., and Duran-Matute, M.: Efficient deep learning surrogate method for predicting the transport of particle patches in coastal environments, Marine Pollut. Bull., 209, 117251, https://doi.org/10.1016/j.marpolbul.2024.117251, 2024. a
Friedrichs, C. T., Armbrust, B. A., and DeSwart, H.: Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries, Physics of Estuaries and Coastal Seas: Proceedings of the 8th International Biennial Conference on Physics of Estuaries and Coastal Seas, Balkema, Rotterdam, Netherlands, pp. 315–328, 1998. a
Ganju, N. K., Brush, M. J., Rashleigh, B., Aretxabaleta, A. L., Del Barrio, P., Grear, J. S., Harris, L. A., Lake, S. J., McCardell, G., O’Donnell, J., Ralston, D. K., Signell, R. P., Testa, J. M., and Vaudrey, J. M. P: Progress and challenges in coupled hydrodynamic-ecological estuarine modeling, Estuar. Coasts, 39, 311–332, 2016. a
Gola, D., Tyagi, P. K., Arya, A., Chauhan, N., Agarwal, M., Singh, S., and Gola, S.: The impact of microplastics on marine environment: A review, Environ. Nanotechnol. Monit. Manage., 16, 100552, https://doi.org/10.1016/j.enmm.2021.100552, 2021. a
Gorman, D., Gutiérrez, A. R., Turra, A., Manzano, A. B., Balthazar-Silva, D., Oliveira, N. R., and Harari, J.: Predicting the dispersal and accumulation of microplastic pellets within the estuarine and coastal waters of South-Eastern Brazil using integrated rainfall data and Lagrangian particle tracking models, Front. Environ. Sci., 8, 559405, https://doi.org/10.3389/fenvs.2020.559405, 2020. a, b, c, d, e, f, g, h, i
Grasso, F. and Caillaud, M.: A ten-year numerical hindcast of hydrodynamics and sediment dynamics in the Loire Estuary, Sci. Data, 10, 394, https://doi.org/10.1038/s41597-023-02294-w, 2023. a
Gupta, P., Saha, M., Rathore, C., Suneel, V., Ray, D., Naik, A., Unnikrishnan, K., Dhivya, M., and Daga, K.: Spatial and seasonal variation of microplastics and possible sources in the estuarine system from central west coast of India, Environ. Pollut., 288, 117665, https://doi.org/10.1016/j.envpol.2021.117665, 2021. a
Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., and Zeng, E. Y.: A global perspective on microplastics, J. Geophys. Res.-Oceans, 125, e2018JC014719, https://doi.org/10.1029/2018JC014719, 2020. a
Hansen, D. V. and Rattray Jr., M.: Gravitational circulation in straits and estuaries, J. Mar. Res., 23, 104–122. https://elischolar.library.yale.edu/journal_of_marine_research/1048 (last access: 16 May 2023), 1966. a
Hatzonikolakis, Y., Giakoumi, S., Raitsos, D. E., Tsiaras, K., Kalaroni, S., Triantaphyllidis, G., and Triantafyllou, G.: Quantifying transboundary plastic pollution in marine protected areas across the Mediterranean Sea, Front. Marine Sci., 8, 762235, https://doi.org//10.3389/fmars.2021.762235, 2022. a
He, B., Smith, M., Egodawatta, P., Ayoko, G. A., Rintoul, L., and Goonetilleke,A.: Dispersal and transport of microplastics in river sediments, Environ. Pollut., 279, 116884, https://doi.org/10.1016/j.envpol.2021.116884, 2021. a
Hu, D., Shen, M., Zhang, Y., Li, H., and Zeng, G.: Microplastics and nanoplastics: would they affect global biodiversity change?, Environ. Sci. Pollut. Res., 26, 19997–20002, 2019. a
Jalón-Rojas, I., Schmidt, S., and Sottolichio, A.: Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions, Hydrol. Earth Syst. Sci., 19, 2805–2819, https://doi.org/10.5194/hess-19-2805-2015, 2015. a
Jalón-Rojas, I., Sottolichio, A., Hanquiez, V., Fort, A., and Schmidt, S.: To what extent multidecadal changes in morphology and fluvial discharge impact tide in a convergent (turbid) tidal river, J. Geophys. Res.-Oceans, 123, 3241–3258, 2018. a
Jalón-Rojas, I., Wang, X.-H., and Fredj, E.: Technical note: On the importance of a three-dimensional approach for modelling the transport of neustic microplastics, Ocean Sci., 15, 717–724, https://doi.org/10.5194/os-15-717-2019, 2019b. a, b, c
Jalón-Rojas, I., Dijkstra, Y., Schuttelaars, H., Brouwer, R., Schmidt, S., and Sottolichio, A.: Multidecadal evolution of the turbidity maximum zone in a macrotidal river under climate and anthropogenic pressures, J. Geophys. Res.-Oceans, 126, e2020JC016273, https://doi.org/10.1029/2020JC016273, 2021. a, b, c
Jalón-Rojas, I., Defontaine, S., Bermúdez, M., and Díez-Minguito, M.: Transport of microplastic debris in estuaries, Reference Module in Earth Systems and Environmental Sciences: Treatise of estuarine and coastal Science (Second Edition), 2, 368–409, https://doi.org/10.1016/B978-0-323-90798-9.00022-6, 2024. a, b, c, d, e, f, g, h
Jalón-Rojas, I., Sous, D., and Marieu, V.: A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0, Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025, 2025. a, b, c
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., and Law, K. L.: Plastic waste inputs from land into the ocean, Science, 347, 768–771, 2015. a
Kaiser, D., Kowalski, N., and Waniek, J. J.: Effects of biofouling on the sinking behavior of microplastics, Environ. Res. Lett., 12, 124003, https://doi.org/10.1088/1748-9326/aa8e8b, 2017. a
Kooi, M. and Koelmans, A. A.: Simplifying microplastic via continuous probability distributions for size, shape, and density, Environ. Sci. Technol. Lett., 6, 551–557, 2019. a
Krone, R. B.: Flume studies of transport of sediment in estrarial shoaling processes, Final Report, Hydr. Engr. and Samitary Engr. Res. Lab., Univ. of California, 110 pp. [Available from U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS 39180.], https://cir.nii.ac.jp/crid/1572824499069673856 (last access: 12 May 2025), 1962. a, b
Landebrit, L., Sanchez, R., Soccalingame, L., Palazot, M., Kedzierski, M., Bruzeau, S., Albignac, M., Ludwig, W., Ghiglione, J. F., and Ter Halle, A.: Small microplastics have much higher mass concentrations than large microplastics at the surface of nine major European rivers, Environ. Sci. Pollut. Res., 32, 10050–10065, https://doi.org/10.1007/s11356-024-34486-1, 2024. a
Lebreton, L.-M., Greer, S., and Borrero, J. C.: Numerical modelling of floating debris in the world’s oceans, Mar. Pollut. Bull., 64, 653–661, 2012. a
Lefebvre, C., Le Bihanic, F., Jalón-Rojas, I., Dusacre, E., Chassaigne, L., Bichon, J., Clérandeau, C., Morin, B., Lecomte, S., and Cachot, J.: Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach, Sci. Total Environ., 898, 165460, https://doi.org/10.1016/j.scitotenv.2023.165460, 2023. a
Liubartseva, S., Coppini, G., Lecci, R., and Clementi, E.: Tracking plastics in the Mediterranean: 2D Lagrangian model, Mar. Pollut. Bull., 129, 151–162, 2018. a
Lobelle, D., Kooi, M., Koelmans, A. A., Laufkötter, C., Jongedijk, C. E., Kehl, C., and van Sebille, E.: Global modeled sinking characteristics of biofouled microplastic, J. Geophys. Res.-Oceans, 126, e2020JC017098, https://doi.org/10.1029/2020JC017098, 2021. a
López, A. G., Najjar, R. G., Friedrichs, M. A., Hickner, M. A., and Wardrop, D. H.: Estuaries as filters for riverine microplastics: Simulations in a large, coastal-plain estuary, Front. Mar. Sci., 8, 715924, https://doi.org/10.3389/fmars.2021.715924, 2021. a, b
MacCready, P., Geyer, W. R., and Burchard, H.: Estuarine exchange flow is related to mixing through the salinity variance budget, J. Phys. Oceanogr., 48, 1375–1384, 2018. a
Naidu, S., Ranga Rao, V., and Ramu, K.: Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea, Environ. Geochem. Health, 40, 1377–1383, 2018. a
Nunez, P., Castanedo, S., and Medina, R.: Role of ocean tidal asymmetry and estuarine geometry in the fate of plastic debris from ocean sources within tidal estuaries, Estuar. Coast. Shelf Sci., 259, 107470, https://doi.org/10.1016/j.ecss.2021.107470, 2021. a
Nvm, O. and Owen, M.: A two layer model of mud transport in the Thames Estuary, Proc. Inst. Civ. Eng., 51, 175–205, 1972. a
Oberrecht, D.: Development of a numerical modeling approach for large-scale fluid mud flow in estuarine environments, Doctoral Thesis (Hannover, Germany: LUH), https://doi.org/10.15488/10488, 2021. a
Onink, V., Jongedijk, C. E., Hoffman, M. J., van Sebille, E., and Laufkötter, C.: Global simulations of marine plastic transport show plastic trapping in coastal zones, Environ. Res. Lett., 16, 064053, https://doi.org/10.1088/1748-9326/abecbd, 2021. a
Papageorgiou, D. and Topouzelis, K.: Experimental observations of marginally detectable floating plastic targets in Sentinel-2 and Planet Super Dove imagery, Int. J. Appl. Earth Obs. Geoinf., 134, 104245, https://doi.org/10.1016/j.jag.2024.104245, 2024. a
Peytavin, A., Sainte-Rose, B., Forget, G., and Campin, J.-M.: Ocean Plastic Assimilator v0.2: assimilation of plastic concentration data into Lagrangian dispersion models, Geosci. Model Dev., 14, 4769–4780, https://doi.org/10.5194/gmd-14-4769-2021, 2021. a
Pierard, C. M., Meirer, F., and Sebille, E. v.: Identifying the origins of nanoplastics in the abyssal South Atlantic using backtracking Lagrangian simulations with fragmentation, Ocean Coast. Res., 72, e24043, https://doi.org/10.1590/2675-2824072.24008, 2024a. a
Pierard, C. M., Rühs, S., Gómez-Navarro, L., Denes, M. C., Meirer, F., Penduff, T., and van Sebille, E.: Quantifying Variability in Lagrangian Particle Dispersal in Ocean Ensemble Simulations: an Information Theory Approach, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3847, 2024b. a
Pilechi, A., Mohammadian, A., and Murphy, E.: A numerical framework for modeling fate and transport of microplastics in inland and coastal waters, Mar. Pollut. Bull., 184, 114119, https://doi.org/10.1016/j.marpolbul.2022.114119, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w
Poulain-Zarcos, M., Pujara, N., Verhille, G., and Mercier, M. J.: Laboratory experiments related to marine plastic pollution: a review of past work and future directions, Comptes Rendus. Physique, 25, 1–32, 2024. a
Rubinstein, R. Y. and Kroese, D. P.: Simulation and the Monte Carlo method, John Wiley & Sons, Print ISBN: 9781118632161, Online ISBN: 9781118631980, https://doi.org/10.1002/9781118631980, 2016. a
Ruiz-Gonzalez, V., Jalón-Rojas, I., Steinmetz, C., and Kaimathuruthy, B. J.: Enhancing microplastic sampling efficiency with in-situ filtration instrumentation: a novel protocol for turbid estuarine waters, in: Rencontres du GDR Plastiques Environnement Santé, https://hal.science/hal-04691421 (last access: 19 September 2025), 2024. a
Ruiz-Gonzalez, V., Jalon-Rojas, I., and Defontaine, S.: Evaluating settling velocities of microplastics-sediment mixtures under laboratory conditions , EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025, EGU25-10844, https://doi.org/10.5194/egusphere-egu25-10844, 2025. a
Shi, H., Yu, D., Yin, L., Sui, Y., Liu, Y., Qiao, S., Wang, W., Zheng, W., and Ding, D.: Source-sink process of microplastics in watershed-estuary-offshore system, J. Clean. Product., 338, 130612, https://doi.org/10.1016/j.jclepro.2022.130612, 2022. a
Shi, H., Wang, X., Zhu, L., and Li, D.: Comprehensive Comparison of Various Microplastic Sampling Methods in Sea Water: Implications for Data Compilation, Water, 15, 1035, https://doi.org/10.3390/w15061035, 2023. a
Shiravani, G., Oberrecht, D., Roscher, L., Kernchen, S., Halbach, M., Gerriets, M., Scholz-Böttcher, B., Gerdts, G., Badewien, T., and Wurpts, A.: Numerical modeling of microplastic interaction with fine sediment under estuarine conditions, Water Res., 231, 119564, https://doi.org/10.1016/j.watres.2022.119564, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t
Simpson, J. H., Brown, J., Matthews, J., and Allen, G.: Tidal straining, density currents, and stirring in the control of estuarine stratification, Estuaries, 13, 125–132, 1990. a
Sousa, M. C., DeCastro, M., Gago, J., Ribeiro, A. S., Des, M., Gómez-Gesteira, J. L., Dias, J. M., and Gomez-Gesteira, M.: Modelling the distribution of microplastics released by wastewater treatment plants in Ria de Vigo (NW Iberian Peninsula), Mar. Pollut. Bull., 166, 112227, https://doi.org/10.1016/j.marpolbul.2021.112227, 2021. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Stagnitti, M. and Musumeci, R.: Model-based estimation of seasonal transport of macro-plastics in a marine protected area, Mar. Pollut. Bull., 201, 116191, https://doi.org/10.1016/j.marpolbul.2024.116191, 2024. a
Stark, J., Smolders, S., Meire, P., and Temmerman, S.: Impact of intertidal area characteristics on estuarine tidal hydrodynamics: A modelling study for the Scheldt Estuary, Estuar. Coast. Shelf Sci., 198, 138–155, 2017. a
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., and Russell, A. E.: Lost at sea: where is all the plastic?, Science, 304, 838, https://doi.org/10.1126/science.1094559, 2004. a
Tong, X., Jong, M.-C., Zhang, J., You, L., and Gin, K. Y.-H.: Modelling the spatial and seasonal distribution, fate and transport of floating plastics in tropical coastal waters, J. Hazard. Mater., 414, 125502, https://doi.org/10.1016/j.jhazmat.2021.125502, 2021. a
Turton, R. and Clark, N.: An explicit relationship to predict spherical particle terminal velocity, Powder Technol., 53, 127–129, 1987. a
Uncles, R.: Estuarine physical processes research: some recent studies and progress, Estuar. Coast. Shelf Sci., 55, 829–856, 2002. a
van Maren, D. S. and Cronin, K.: Uncertainty in complex three-dimensional sediment transport models: equifinality in a model application of the Ems Estuary, the Netherlands, Ocean Dynam., 66, 1665–1679, 2016. a
Van Maren, D. S., Winterwerp, J. C., and Vroom, J.: Fine sediment transport into the hyper-turbid lower Ems River: the role of channel deepening and sediment-induced drag reduction, Ocean Dynam., 65, 589–605, 2015. a
Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Arnold W. H., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., and Zika, J. D.: Lagrangian ocean analysis: Fundamentals and practices, Ocean Model., 121, 49–75, 2018. a
Waldschlager, K. and Schuttrumpf, H.: Erosion behavior of different microplastic particles in comparison to natural sediments, Environ. Sci. Technol., 53, 13219–13227, 2019b. a
Waldschlaeger, K., Born, M., Cowger, W., Gray, A., and Schuettrumpf, H.: Settling and rising velocities of environmentally weathered micro-and macroplastic particles, Environ. Res., 191, 110192, https://doi.org/10.1016/j.envres.2020.110192, 2020. a, b, c, d
Wegner, A., Besseling, E., Foekema, E. M., Kamermans, P., and Koelmans, A. A.: Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.), Environ. Toxicol. Chem., 31, 2490–2497, 2012. a
Weiss, L., Ludwig, W., Heussner, S., Canals, M., Ghiglione, J.-F., Estournel, C., Constant, M., and Kerhervé, P.: The missing ocean plastic sink: gone with the rivers, Science, 373, 107–111, 2021. a
Wichmann, D., Delandmeter, P., Dijkstra, H. A., and van Sebille, E.: Mixing of passive tracers at the ocean surface and its implications for plastic transport modelling, Environ. Res. Commun., 1, 115001, https://doi.org/10.1088/2515-7620/ab4e77, 2019. a
Wollast, R.: Biogeochemical processes in estuaries, in: Marine Science Frontiers for Europe, Springer, 61–77, https://doi.org/10.1007/978-3-642-55862-7_5, 2003. a
Wu, F., Reding, L., Starkenburg, M., Leistenschneider, C., Primpke, S., Vianello, A., Zonneveld, K. A., Huserbråten, M. B., Versteegh, G. J., and Gerdts, G.: Spatial distribution of small microplastics in the Norwegian Coastal Current, Sci. Total Environ., 942, 173808, https://doi.org/10.1016/j.scitotenv.2024.173808, 2024a. a
Wu, N., Grieve, S. W., Manning, A. J., and Spencer, K. L.: Flocs as vectors for microplastics in the aquatic environment, Nat. Water, 2, 1082–1090, https://doi.org/10.1038/s44221-024-00332-4, 2024b. a, b
Xiao, Z., Wang, X., Song, D., Jalón-Rojas, I., and Harrison, D.: Numerical modelling of suspended-sediment transport in a geographically complex microtidal estuary: Sydney Harbour Estuary, NSW, Estuar. Coast. Shelf Sci., 236, 106605, https://doi.org/10.1016/j.ecss.2020.106605, 2020. a
Ye, S. and Andrady, A. L.: Fouling of floating plastic debris under Biscayne Bay exposure conditions, Mar. Pollut. Bull., 22, 608–613, 1991. a
Zhu, X., Zeng, Y., and Huai, W.: Settling velocity of non-spherical hydrochorous seeds, Adv. Water Resour., 103, 99–107, 2017. a
Executive editor
This paper provides a comprehensive review of modelling studies on microplastic transport in estuaries, a field that, while relatively recent, is rapidly expanding due to the growing recognition of microplastic pollution as a global environmental challenge. It offers the first synthesis of the diverse modelling approaches applied in estuarine studies and we think that this paper meets the scope of the Geoscientific Model Development as the journal emphasizes modelling studies.
This paper provides a comprehensive review of modelling studies on microplastic transport in...
Short summary
Studies on plastic pollution have emerged as a rapidly growing field of research. Modelling microplastic transport in estuaries stems from their complex hydrodynamics and diverse particle behaviours affecting the dispersion and retention of microplastics. We review key modelling approaches applied in estuaries analysing their set-ups and parameterizations. We provide recommendations and future directions to improve the accuracy and modelling strategies for estuarine microplastic research.
Studies on plastic pollution have emerged as a rapidly growing field of research. Modelling...