Articles | Volume 18, issue 16
https://doi.org/10.5194/gmd-18-5291-2025
https://doi.org/10.5194/gmd-18-5291-2025
Model evaluation paper
 | 
26 Aug 2025
Model evaluation paper |  | 26 Aug 2025

Mitigating hail overforecasting in the two-moment Milbrandt–Yau microphysics scheme (v2.25.2_beta_04) in WRF (v4.5.1) by incorporating the graupel spongy wet growth process (MY2_GSWG v1.0)

Shaofeng Hua, Gang Chen, Baojun Chen, Mingshan Li, and Xin Xu

Related authors

Accelerated impact of airborne glaciogenic seeding of stratiform clouds by turbulence
Meilian Chen, Xiaoqin Jing, Jiaojiao Li, Jing Yang, Xiaobo Dong, Bart Geerts, Yan Yin, Baojun Chen, Lulin Xue, Mengyu Huang, Ping Tian, and Shaofeng Hua
Atmos. Chem. Phys., 25, 7581–7596, https://doi.org/10.5194/acp-25-7581-2025,https://doi.org/10.5194/acp-25-7581-2025, 2025
Short summary
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024,https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Instant and delayed effects of March biomass burning aerosols over the Indochina Peninsula
Anbao Zhu, Haiming Xu, Jiechun Deng, Jing Ma, and Shaofeng Hua
Atmos. Chem. Phys., 22, 15425–15447, https://doi.org/10.5194/acp-22-15425-2022,https://doi.org/10.5194/acp-22-15425-2022, 2022
Short summary

Cited articles

Adams-Selin, R. D. and Ziegler, C. L.: Forecasting hail using a one-dimensional hail growth model within WRF, Mon. Weather Rev., 144, 4919–4939, https://doi.org/10.1175/MWR-D16-0027.1, 2016. 
Adams-Selin, R. D., Clark, A. J., Melick, C. J., Dembek, S. R., Jirak, I. L., and Ziegler, C. L.: Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments, Weather Forecast., 34, 61–79, https://doi.org/10.1175/WAF-D-18-0024.1, 2019. 
Adams-Selin, R. D., Kalb, C., Jensen, T., Henderson, J., Supinie, T., Harris, L., Wang Y. H., Gallo B. T., and Clark A. J.: Just What Is “Good”? Musings on Hail Forecast Verification through Evaluation of FV3-HAILCAST Hail Forecasts, Weather Forecast., 38, 371–387, https://doi.org/10.1175/WAF-D-22-0087.1, 2023. 
Allen, J., Karoly, D., and Mills, G.: A severe thunderstorm climatology for Australia and associated thunderstorm environments, Aust. Meteorol. Oceanogr. J., 61, 143–158, https://doi.org/10.22499/2.6103.001, 2011. 
Allen, J. T., Giammanco, I. M., Kumjian, M. R., Punge, H. J., Zhang, Q., Groenemeijer, P., Kunz, M., and Ortega, K.: Understanding Hail in the Earth System, Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665, 2019. 
Download
Short summary
Hail forecasting using numerical models remains a challenge. In this study, we found that the commonly used graupel-to-hail conversion parameterization method led to hail overforecasting in heavy rainfall cases where no hail was observed. By incorporating the spongy wet growth process, we successfully mitigated hail overforecasting. The modified scheme also produced hail in real hail events. This research contributes to a better understanding of hail formation.
Share