Articles | Volume 18, issue 14
https://doi.org/10.5194/gmd-18-4433-2025
https://doi.org/10.5194/gmd-18-4433-2025
Methods for assessment of models
 | 
22 Jul 2025
Methods for assessment of models |  | 22 Jul 2025

Chempath 1.0: an open-source pathway analysis program for photochemical models

Daniel Garduno Ruiz, Colin Goldblatt, and Anne-Sofie Ahm

Related authors

Peat-DBase v.1: A Compiled Database of Global Peat Depth Measurements
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432,https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Effects of ozone levels on climate through Earth history
Russell Deitrick and Colin Goldblatt
Clim. Past, 19, 1201–1218, https://doi.org/10.5194/cp-19-1201-2023,https://doi.org/10.5194/cp-19-1201-2023, 2023
Short summary
The Palaeoclimate and Terrestrial Exoplanet Radiative Transfer Model Intercomparison Project (PALAEOTRIP): experimental design and protocols
Colin Goldblatt, Lucas Kavanagh, and Maura Dewey
Geosci. Model Dev., 10, 3931–3940, https://doi.org/10.5194/gmd-10-3931-2017,https://doi.org/10.5194/gmd-10-3931-2017, 2017
Short summary
Measurement of geologic nitrogen using mass spectrometry, colorimetry, and a newly adapted fluorometry technique
Benjamin W. Johnson, Natashia Drage, Jody Spence, Nova Hanson, Rana El-Sabaawi, and Colin Goldblatt
Solid Earth, 8, 307–318, https://doi.org/10.5194/se-8-307-2017,https://doi.org/10.5194/se-8-307-2017, 2017
Short summary
Diminished greenhouse warming from Archean methane due to solar absorption lines
B. Byrne and C. Goldblatt
Clim. Past, 11, 559–570, https://doi.org/10.5194/cp-11-559-2015,https://doi.org/10.5194/cp-11-559-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Development of the CMA-GFS-AERO 4D-Var assimilation system v1.0 – Part 1: System description and preliminary experimental results
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025,https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Optimized dynamic mode decomposition for reconstruction and forecasting of atmospheric chemistry data
Meghana Velagar, Christoph Keller, and J. Nathan Kutz
Geosci. Model Dev., 18, 4667–4684, https://doi.org/10.5194/gmd-18-4667-2025,https://doi.org/10.5194/gmd-18-4667-2025, 2025
Short summary
Interpolating turbulent heat fluxes missing from a prairie observation on the Tibetan Plateau using artificial intelligence models
Quanzhe Hou, Zhiqiu Gao, Zexia Duan, and Minghui Yu
Geosci. Model Dev., 18, 4625–4641, https://doi.org/10.5194/gmd-18-4625-2025,https://doi.org/10.5194/gmd-18-4625-2025, 2025
Short summary
Carbon dioxide plume dispersion simulated at the hectometer scale using DALES: model formulation and observational evaluation
Arseniy Karagodin-Doyennel, Fredrik Jansson, Bart J. H. van Stratum, Hugo Denier van der Gon, Jordi Vilà-Guerau de Arellano, and Sander Houweling
Geosci. Model Dev., 18, 4571–4599, https://doi.org/10.5194/gmd-18-4571-2025,https://doi.org/10.5194/gmd-18-4571-2025, 2025
Short summary
Low-level jets in the North and Baltic seas: mesoscale model sensitivity and climatology using WRF V4.2.1
Bjarke T. E. Olsen, Andrea N. Hahmann, Nicolas G. Alonso-de-Linaje, Mark Žagar, and Martin Dörenkämper
Geosci. Model Dev., 18, 4499–4533, https://doi.org/10.5194/gmd-18-4499-2025,https://doi.org/10.5194/gmd-18-4499-2025, 2025
Short summary

Cited articles

Androulakis, I. P.: New approaches for representing, analyzing and visualizing complex kinetic transformations, Comput. Chem. Eng., 31, 41–50, https://doi.org/10.1016/j.compchemeng.2006.05.027, 2006. a
Arney, G., Domagal-Goldman, S. D., Meadows, V. S., Wolf, E. T., Schwieterman, E., Charnay, B., Claire, M., Hébrard, E., and Trainer, M. G.: The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth, Astrobiology, 16, 873–899, https://doi.org/10.1089/ast.2015.1422, 2016. a
Chapman, S.: A Theory of Upper-atmospheric Ozone, Memoirs of the Royal Meteorological Society, Edward Stanford, https://books.google.ca/books?id=Dd0VGwAACAAJ (last access: 11 July 2025), 1930. a
Claire, M. W., Kasting, J. F., Domagal-Goldman, S. D., Stüeken, E. E., Buick, R., and Meadows, V. S.: Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere, Geochim. Cosmochim. Ac., 141, 365–380, https://doi.org/10.1016/j.gca.2014.06.032, 2014. a
Clarke, B. L.: Stoichiometric network analysis, Cell Biophys., 12, 237–253, https://doi.org/10.1007/bf02918360, 1988. a
Download
Short summary
Photochemical models describe how the composition of the atmosphere changes due to chemical reactions, transport, and other processes. These models are useful for studying the composition of the Earth's and other planets' atmospheres. Understanding the results of these models can be difficult. Here, we build on previous work to develop open-source code that can identify the reaction chains (pathways) that produce the results of these models, facilitating the understanding of these results.
Share