Articles | Volume 18, issue 24
https://doi.org/10.5194/gmd-18-10203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-18-10203-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical modelling of diffusion-limited mineral growth for geospeedometry applications
Institute of Geosciences, Johannes Gutenberg University, 55128 Mainz, Germany
Mainz Institute of Multiscale Modeling, Johannes Gutenberg University, 55128 Mainz, Germany
Pascal S. Aellig
Institute of Geosciences, Johannes Gutenberg University, 55128 Mainz, Germany
Mainz Institute of Multiscale Modeling, Johannes Gutenberg University, 55128 Mainz, Germany
Evangelos Moulas
Institute of Geosciences, Johannes Gutenberg University, 55128 Mainz, Germany
Mainz Institute of Multiscale Modeling, Johannes Gutenberg University, 55128 Mainz, Germany
Related authors
No articles found.
Simon Boisserée, Evangelos Moulas, and Markus Bachmayr
Geosci. Model Dev., 18, 8143–8156, https://doi.org/10.5194/gmd-18-8143-2025, https://doi.org/10.5194/gmd-18-8143-2025, 2025
Short summary
Short summary
Understanding porous fluid flow is key for many geology applications. Traditional methods cannot resolve cases with sharp discontinuities in hydraulic/mechanical properties across those layers. Here we present a new space-time method that can handle such discontinuities. This approach is coupled with trace element transport. Our study reveals that the layering of rocks significantly influences the formation of fluid-rich channels and the material distribution adjacent to discontinuities.
Nicolas Riel, Boris J. P. Kaus, Albert de Montserrat, Evangelos Moulas, Eleanor C. R. Green, and Hugo Dominguez
Geosci. Model Dev., 18, 6951–6962, https://doi.org/10.5194/gmd-18-6951-2025, https://doi.org/10.5194/gmd-18-6951-2025, 2025
Short summary
Short summary
Our research focuses on improving the way we predict mineral assemblage. Current methods, while accurate, are slowed by complex calculations. We developed a new approach that simplifies these calculations and speeds them up significantly using a technique called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This breakthrough reduces computation time by more than five times, potentially unlocking new horizons in modeling reactive magmatic systems.
Lorenzo G. Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M. Schmalholz
Solid Earth, 12, 1749–1775, https://doi.org/10.5194/se-12-1749-2021, https://doi.org/10.5194/se-12-1749-2021, 2021
Short summary
Short summary
We quantify the relative importance of forces driving the dynamics of mountain building using two-dimensional computer simulations of long-term coupled lithosphere–upper-mantle deformation. Buoyancy forces can be as high as shear forces induced by far-field plate motion and should be considered when studying the formation of mountain ranges. The strength of rocks flooring the oceans and the density structure of the crust control deep rock cycling and the topographic elevation of orogens.
Cited articles
Albarede, F. and Bottinga, Y.: Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava, Geochim. Cosmochim. Ac., 36, 141–156, https://doi.org/10.1016/0016-7037(72)90003-8, 1972.
Balluffi, R. W., Allen, S. M., and Carter, W. C.: Kinetics of materials, Wiley-Interscience, Hoboken, NJ, 645 pp., ISBN 978-0-471-24689-3, 2005.
Baronnet, A.: Natural crystallization and relevant crystal growth experiments, Prog. Cryst. Growth Charact. Mater., 26, 1–24, https://doi.org/10.1016/0960-8974(93)90007-Q, 1993.
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Rev., 59, 65–98, https://doi.org/10.1137/141000671, 2017.
Bindeman, I. N. and Melnik, O. E.: Zircon Survival, Rebirth and Recycling during Crustal Melting, Magma Crystallization, and Mixing Based on Numerical Modelling, J. Petrol., 57, 437–460, https://doi.org/10.1093/petrology/egw013, 2016.
Burg, J.-P. and Moulas, E.: Cooling-rate constraints from metapelites across two inverted metamorphic sequences of the Alpine-Himalayan belt; evidence for viscous heating, J. Struct. Geol., 156, 104536, https://doi.org/10.1016/j.jsg.2022.104536, 2022.
Chakraborty, S.: Diffusion modeling as a tool for constraining timescales of evolution of metamorphic rocks, Mineral. Petrol., 88, 7–27, https://doi.org/10.1007/s00710-006-0152-6, 2006.
Chakraborty, S.: Diffusion in Solid Silicates: A Tool to Track Timescales of Processes Comes of Age, Annu. Rev. Earth Planet. Sci., 36, 153–190, https://doi.org/10.1146/annurev.earth.36.031207.124125, 2008.
Chakraborty, S. and Dohmen, R.: Diffusion chronometry of volcanic rocks: looking backward and forward, Bull. Volcanol., 84, 57, https://doi.org/10.1007/s00445-022-01565-5, 2022.
Chakraborty, S. and Ganguly, J.: Cation diffusion in aluminosilicate garnets: experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications, Contrib. Mineral. Petrol., 111, 74–86, https://doi.org/10.1007/BF00296579, 1992.
Chen, J., Zou, Y., and Chu, X.: DIFFUSUP: A graphical user interface (GUI) software for diffusion modeling, Appl. Comput. Geosci., 22, 100157, https://doi.org/10.1016/j.acags.2024.100157, 2024.
Chu, X., Ague, J. J., Tian, M., Baxter, E. F., Rumble, D., and Chamberlain, C. P.: Testing for Rapid Thermal Pulses in the Crust by Modeling Garnet Growth–Diffusion–Resorption Profiles in a UHT Metamorphic `Hot Spot', New Hampshire, USA, J. Petrol., 59, 1939–1964, https://doi.org/10.1093/petrology/egy085, 2018.
Connolly, J. A. D.: Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sc. Lett., 236, 524–541, https://doi.org/10.1016/j.epsl.2005.04.033, 2005.
Costa, F., Dohmen, R., and Chakraborty, S.: Time scales of magmatic processes from modeling the zoning Patterns of crystals, Rev. Mineral. Geochem., 69, 545–594, https://doi.org/10.2138/rmg.2008.69.14, 2008.
Costa, F., Shea, T., and Ubide, T.: Diffusion chronometry and the timescales of magmatic processes, Nat. Rev. Earth Environ., 1, 201–214, https://doi.org/10.1038/s43017-020-0038-x, 2020.
Crank, J.: The mathematics of diffusion, in: 2nd Edn., Clarendon Press, Oxford, England, 414 pp., ISBN 978-0-19-853344-3, 1975.
De Groot, S. R. and Mazur, P.: Non-equilibrium Thermodynamics, Dover Publications, New York, 528 pp., ISBN 0-486-64741-2, 1984.
Dohmen, R. and Chakraborty, S.: Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine, Phys. Chem. Miner., 34, 409–430, https://doi.org/10.1007/s00269-007-0158-6, 2007a.
Dohmen, R. and Chakraborty, S.: Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine, Phys. Chem. Miner., 34, 597–598, https://doi.org/10.1007/s00269-007-0185-3, 2007b.
Eiler, J. M., Baumgartner, L. P., and Valley, J. W.: Intercrystalline stable isotope diffusion: a fast grain boundary model, Contrib. Mineral. Petrol., 112, 543–557, https://doi.org/10.1007/BF00310783, 1992.
Fick, A.: Ueber Diffusion, Ann. Phys., 170, 59–86, https://doi.org/10.1002/andp.18551700105, 1855.
Gaidies, F., De Capitani, C., Abart, R., and Schuster, R.: Prograde garnet growth along complex P–T–t paths: results from numerical experiments on polyphase garnet from the Wölz Complex (Austroalpine basement), Contrib. Mineral. Petrol., 155, 673–688, https://doi.org/10.1007/s00410-007-0264-y, 2008.
Garcia, V. H., Scherer, C., and Mors, P. M.: Growth kinetics of phases in solid-state diffusion couples, Phys. Status Solidi A, 152, 385–392, https://doi.org/10.1002/pssa.2211520207, 1995.
Girona, T. and Costa, F.: DIPRA: A user-friendly program to model multi-element diffusion in olivine with applications to timescales of magmatic processes, Geochem. Geophy. Geosy., 14, 422–431, https://doi.org/10.1029/2012GC004427, 2013.
Goldstein, J. I. and Short, J. M.: Cooling rates of 27 iron and stony-iron meteorites, Geochim. Cosmochim. Ac., 31, 1001–1023, https://doi.org/10.1016/0016-7037(67)90076-2, 1967.
Guo, C. and Zhang, Y.: Multicomponent diffusion in silicate melts: SiO2–TiO2–Al2O3–MgO–CaO–Na2O–K2O System, Geochim. Cosmochim. Ac., 195, 126–141, https://doi.org/10.1016/j.gca.2016.09.003, 2016.
Hartley, M. E., Morgan, D. J., Maclennan, J., Edmonds, M., and Thordarson, T.: Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe–Mg diffusion in olivine, Earth Planet. Sc. Lett., 439, 58–70, https://doi.org/10.1016/j.epsl.2016.01.018, 2016.
Hesse, M. A.: A finite volume method for trace element diffusion and partitioning during crystal growth, Comput. Geosci., 46, 96–106, https://doi.org/10.1016/j.cageo.2012.04.009, 2012.
Hollister, L. S.: Garnet Zoning: An Interpretation Based on the Rayleigh Fractionation Model, Science, 154, 1647–1651, https://doi.org/10.1126/science.154.3757.1647, 1966.
Hughes, T. J. R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, New Jersey, 825 pp., ISBN 0-13-317025-X, 1987.
Kahaner, D., Moler, C., and Nash, S.: Numerical Methods and Software, Prentice Hall, New Jersey, 504 pp., ISBN 0-13-645 627258-4, 1989.
Kelly, E. D., Carlson, W. D., and Connelly, J. N.: Implications of garnet resorption for the Lu-Hf garnet geochronometer: an example from the contact aureole of the Makhavinekh Lake Pluton, Labrador: Effects of garnet resorption on LU-HF ages, J. Metamorph. Geol., 29, 901–916, https://doi.org/10.1111/j.1525-1314.2011.00946.x, 2011.
Kittur, M. G. and Huston, R. L.: Finite element mesh refinement criteria for stress analysis, Comput. Struct., 34, 251–255, https://doi.org/10.1016/0045-7949(90)90368-C, 1990.
Kohn, M. J.: Models of garnet differential geochronology, Geochim. Cosmochim. Ac., 73, 170–182, https://doi.org/10.1016/j.gca.2008.10.004, 2009.
Kohn, M. J. and Spear, F.: Retrograde net transfer reaction insurance for pressure-temperature estimates, Geology, 28, 1127–1130, https://doi.org/10.1130/0091-7613(2000)28<1127:RNTRIF>2.0.CO;2, 2000.
Kuiken, G. D. C.: Thermodynamics of irreversible processes – Applications to Diffusion and Rheology, in: 1st Edn., WILEY, England, xxxii + 425 pp., ISBN 0 471 94 844 6, 1994.
Lasaga, A. C.: Geospeedometry: An Extension of Geothermometry, in: Kinetics and Equilibrium in Mineral Reactions, edited by: Saxena, S. K., Springer, New York, NY, 81–114, https://doi.org/10.1007/978-1-4612-5587-1_3, 1983.
Lindström, R., Viitanen, M., Juhanoja, J., and Hölttä, P.: Geospeedometry of metamorphic rocks: examples in the Rantasalmi-Sulkava and Kiuruvesi areas, eastern Finland. Biotite–garnet diffusion couples, J. Metamorph. Geol., 9, 181–190, https://doi.org/10.1111/j.1525-1314.1991.tb00513.x, 1991.
Liu, J.-H., Lanari, P., Tamblyn, R., Dominguez, H., Hermann, J., Rubatto, D., Forshaw, J. B., Piccoli, F., Zhang, Q. W. L., Markmann, T. A., Reynes, J., Li, Z. M. G., Jiao, S., and Guo, J.: Ultra-fast metamorphic reaction during regional metamorphism, Geochim. Cosmochim. Ac., 394, 106–125, https://doi.org/10.1016/j.gca.2025.01.036, 2025.
Marschall, H. R., Dohmen, R., and Ludwig, T.: Diffusion-induced fractionation of niobium and tantalum during continental crust formation, Earth Planet. Sc. Lett., 375, 361–371, https://doi.org/10.1016/j.epsl.2013.05.055, 2013.
Moulas, E.: GDIFF: a Finite Difference code for the calculation of multicomponent diffusion in garnet, Zenodo [code], https://doi.org/10.5281/zenodo.8224137, 2023a.
Moulas, E. and Brandon, M. T.: KADMOS: a Finite Element code for the calculation of apparent K-Ar ages in minerals, Zenodo [code], https://doi.org/10.5281/zenodo.7358138, 2023b.
Mutch, E. J. F., Maclennan, J., Shorttle, O., Rudge, J. F., and Neave, D. A.: DFENS: Diffusion Chronometry Using Finite Elements and Nested Sampling, Geochem. Geophys. Geosy., 22, 1–28, https://doi.org/10.1029/2020GC009303, 2021.
Nakamura, M.: Residence time and crystallization history of nickeliferous olivine phenocrysts from the northern Yatsugatake volcanoes, Central Japan: Application of a growth and diffusion model in the system Mg-Fe-Ni, J. Volcanol. Geoth. Res., 66, 81–100, https://doi.org/10.1016/0377-0273(94)00054-K, 1995.
Ozawa, K.: Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites, Contrib. Mineral. Petrol., 82, 52–65, https://doi.org/10.1007/BF00371175, 1983.
Ozawa, K.: Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe2+ exchange, Geochim. Cosmochim. Ac., 48, 2597–2611, https://doi.org/10.1016/0016-7037(84)90308-9, 1984.
Perchuk, A. L. and Philippot, P.: Geospeedometry and Time Scales of High-Pressure Metamorphism, Int. Geol. Rev., 42, 207–223, https://doi.org/10.1080/00206810009465078, 2000.
Rubinsteĭn, L. I.: The Stefan Problem, American Mathematical Soc., Providence, Rhode Island, 432 pp., ISBN 978-0-8218-8656-4, 1971.
Skora, S., Baumgartner, L. P., Mahlen, N. J., Johnson, C. M., Pilet, S., and Hellebrand, E.: Diffusion-limited REE uptake by eclogite garnets and its consequences for Lu–Hf and Sm–Nd geochronology, Contrib. Mineral. Petrol., 152, 703–720, https://doi.org/10.1007/s00410-006-0128-x, 2006.
Smith, V. G., Tiller, W. A., and Rutter, J. W.: A mathematical analysis of solute redistribution during solidification, Can. J. Phys., 33, 723–745, https://doi.org/10.1139/p55-089, 1955.
Spear, F. S.: On the interpretation of peak metamorphic temperatures in light of garnet diffusion during cooling, J. Metamorph. Geol., 9, 379–388, https://doi.org/10.1111/j.1525-1314.1991.tb00533.x, 1991.
Spear, F. S.: The duration of near-peak metamorphism from diffusion modelling of garnet zoning, J. Metamorph. Geol., 32, 903–914, https://doi.org/10.1111/jmg.12099, 2014.
Stroh, A., Moulas, E., and Botcharnikov, R.: FIDDO: FInite Difference Diffusion in Olivine, Zenodo [code], https://doi.org/10.5281/zenodo.10964860, 2024.
Stroh, A., Aellig, P., and Moulas, E.: AnStroh/MovingBoundaryMinerals.jl: Permanent version for paper submission, Zenodo [code], https://doi.org/10.5281/zenodo.15535732, 2025.
Tajčmanová, L., Podladchikov, Y., Moulas, E., and Khakimova, L.: The choice of a thermodynamic formulation dramatically affects modelled chemical zoning in minerals, Sci. Rep., 11, 18740, https://doi.org/10.1038/s41598-021-97568-x, 2021.
Watson, E. B. and Müller, T.: Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions, Chem. Geol., 267, 111–124, https://doi.org/10.1016/j.chemgeo.2008.10.036, 2009.
Zhang, Y., Cherniak, D. J., and Rosso, J. J. (Eds.),: Diffusion in Minerals and Melts, De Gruyter, 1036 pp., ISBN 978-0-939950-86-7, 2010.
Zhong, X., Vrijmoed, J., Moulas, E., and Tajčmanová, L.: A coupled model for intragranular deformation and chemical diffusion, Earth Planet. Sc. Lett., 474, 387–396, https://doi.org/10.1016/j.epsl.2017.07.005, 2017.
Short summary
Crystal growth and diffusion are common processes in geology. Our software MovingBoundaryMinerals.jl calculates compositional profiles in diffusion couples by simulating diffusion-growth processes for geometries with planar/cylindrical/spherical symmetries. Our software has been tested versus various benchmark cases and is provided as an open access software package. This package allows the further use of diffusion/growth phenomena in the calculation of the thermal histories of rocks.
Crystal growth and diffusion are common processes in geology. Our software...
Special issue