Articles | Volume 18, issue 1
https://doi.org/10.5194/gmd-18-101-2025
https://doi.org/10.5194/gmd-18-101-2025
Model description paper
 | 
14 Jan 2025
Model description paper |  | 14 Jan 2025

Orbital-Radar v1.0.0: a tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data

Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer

Data sets

Orbital-radar.py test data repositroy Lukas Pfitzenmaier and Nils Risse https://doi.org/10.5281/zenodo.12547896

Custom collection of categorize, and model data from Jülich on 6 Apr 2021 Lukas Pfitzenmaier et al. https://doi.org/10.60656/e8c4957887854659

Custom collection of categorize, and model data from Mindelo on 15 Jul 2022 B. Antonescu et al. https://doi.org/10.60656/c5e09106ba0246bc

Radar reflectivities at 94 GHz and microwave brightness temperature measurements at 89 GHz during the AFLUX Arctic airborne campaign in spring 2019 out of Svalbard M. Mech et al. https://doi.org/10.1594/PANGAEA.965120

Model code and software

igmk/orbital-radar: orbital-radar_v1.0.0 (gmd_v1.0.0) Nils Risse and Lukas Pfitzenmaier https://doi.org/10.5281/zenodo.13375014

Download
Short summary
The Python tool Orbital-Radar transfers suborbital radar data (ground-based, airborne, and forward-simulated numerical weather prediction model) into synthetic spaceborne cloud profiling radar data, mimicking platform-specific instrument characteristics, e.g. EarthCARE or CloudSat. The tool's novelty lies in simulating characteristic errors and instrument noise. Thus, existing data sets are transferred into synthetic observations and can be used for satellite calibration–validation studies.