Articles | Volume 17, issue 24
https://doi.org/10.5194/gmd-17-8989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-8989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Giovanni Seijo-Ellis
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Boulder, CO, USA
Donata Giglio
Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Boulder, CO, USA
Gustavo Marques
Climate and Global Dynamics Laboratory, U.S. National Science Foundation National Center for Atmospheric Research, Boulder, CO, USA
Frank Bryan
Climate and Global Dynamics Laboratory, U.S. National Science Foundation National Center for Atmospheric Research, Boulder, CO, USA
Related authors
No articles found.
Claire K. Yung, Xylar S. Asay-Davis, Alistair Adcroft, Christopher Y. S. Bull, Jan De Rydt, Michael S. Dinniman, Benjamin K. Galton-Fenzi, Daniel Goldberg, David E. Gwyther, Robert Hallberg, Matthew Harrison, Tore Hattermann, David M. Holland, Denise Holland, Paul R. Holland, James R. Jordan, Nicolas C. Jourdain, Kazuya Kusahara, Gustavo Marques, Pierre Mathiot, Dimitris Menemenlis, Adele K. Morrison, Yoshihiro Nakayama, Olga Sergienko, Robin S. Smith, Alon Stern, Ralph Timmermann, and Qin Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2025-1942, https://doi.org/10.5194/egusphere-2025-1942, 2025
Short summary
Short summary
ISOMIP+ compares 12 ocean models that simulate ice-ocean interactions in a common, idealised, static ice shelf cavity setup, aiming to assess and understand inter-model variability. Models simulate similar basal melt rate patterns, ocean profiles and circulation but differ in ice-ocean boundary layer properties and spatial distributions of melting. Ice-ocean boundary layer representation is a key area for future work, as are realistic-domain ice sheet-ocean model intercomparisons.
Jacopo Sala, Donata Giglio, Antonietta Capotondi, Thea Sukianto, and Mikael Kuusela
EGUsphere, https://doi.org/10.5194/egusphere-2025-548, https://doi.org/10.5194/egusphere-2025-548, 2025
Short summary
Short summary
Marine heatwaves (MHWs) are extreme ocean warming events that can harm marine life, but their causes are not fully understood. We studied MHWs worldwide using ocean observations, satellite data, and a high-quality ocean model. Our results show that changes in the atmosphere are the main cause of these events, though ocean currents play a key role in some regions. Understanding MHWs better will help predict them and support efforts to protect marine ecosystems and coastal communities.
Jacopo Sala, Donata Giglio, Addison Hu, Mikael Kuusela, Kimberly M. Wood, and Ann B. Lee
Ocean Sci., 20, 1441–1455, https://doi.org/10.5194/os-20-1441-2024, https://doi.org/10.5194/os-20-1441-2024, 2024
Short summary
Short summary
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes, gain strength from warm ocean waters. Understanding how oceans react to strong winds is vital. We highlight ocean responses to pre-storm salinity. Changes in salinity affect oceans during storms: salinity rises, temperature falls, and density increases. We suggest that mixing of near-surface with deeper water may impact heat exchange between the ocean and atmosphere during and after a weather event.
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024, https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Short summary
We introduce a new statistical framework to estimate the change in subsurface ocean temperature following the passage of a tropical cyclone (TC). Our approach combines tools handling seasonal variations and spatial dependence in the data, culminating in a three-dimensional characterization of the interaction between TCs and the ocean. Our work allows us to obtain new scientific insights, and we expect it to be generally applicable to studying the impact of TCs on other ocean phenomena.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Gustavo M. Marques, Nora Loose, Elizabeth Yankovsky, Jacob M. Steinberg, Chiung-Yin Chang, Neeraja Bhamidipati, Alistair Adcroft, Baylor Fox-Kemper, Stephen M. Griffies, Robert W. Hallberg, Malte F. Jansen, Hemant Khatri, and Laure Zanna
Geosci. Model Dev., 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022, https://doi.org/10.5194/gmd-15-6567-2022, 2022
Short summary
Short summary
We present an idealized ocean model configuration and a set of simulations performed using varying horizontal grid spacing. While the model domain is idealized, it resembles important geometric features of the Atlantic and Southern oceans. The simulations described here serve as a framework to effectively study mesoscale eddy dynamics, to investigate the effect of mesoscale eddies on the large-scale dynamics, and to test and evaluate eddy parameterizations.
Genevieve Jay Brett, Daniel B. Whitt, Matthew C. Long, Frank Bryan, Kate Feloy, and Kelvin J. Richards
Biogeosciences, 18, 3123–3145, https://doi.org/10.5194/bg-18-3123-2021, https://doi.org/10.5194/bg-18-3123-2021, 2021
Short summary
Short summary
We quantify one form of uncertainty in modeled 21st-century changes in phytoplankton growth. The supply of nutrients from deep to surface waters decreases in the warmer future ocean, but the effect on phytoplankton growth also depends on changes in available light, how much light and nutrient the plankton need, and how fast they can grow. These phytoplankton properties can be summarized as a biological timescale: when it is short, future growth decreases twice as much as when it is long.
Cited articles
Adcroft, A. and Campin, J.-M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models, Ocean Model., 7, 269–284, 2004. a
Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M., Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R., Harrison, M. J., Held, I. M., Jansen, M. F., John, J. G., Krasting, J. P., Langenhorst, A. R., Legg, S., Liang, Z., McHugh, C., Radhakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L., Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xiang, B., Zadeh, N., and Zhang, R.: The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features, J. Adv. Model. Earth Sy., 11, 3167–3211, https://doi.org/10.1029/2019MS001726, 2019. a
Andrade, C. A. and Barton, E. D.: Eddy development and motion in the Caribbean Sea, J. Geophys. Res.-Oceans, 105, 26191–26201, 2000. a
Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: General Circulation Models of the Atmosphere, edited by: Chang, J., vol. 17 of Methods in Computational Physics: Advances in Research and Applications, Elsevier, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977. a
Argo, G.: Argo float data and metadata from global data assembly centre (Argo GDAC), SEANOE, https://doi.org/10.17882/42182, 2000. a
Arias, P. A., Martínez, J. A., and Vieira, S. C.: Moisture sources to the 2010 – 2012 anomalous wet season in northern South America, Clim. Dynam., 45, 2861–2884, 2015. a
Bowen, B. W., Rocha, L. A., Toonen, R. J., and Karl, S. A.: The origins of tropical marine biodiversity, Trends Ecol. Evol., 28, 359–366, 2013. a
Brickman, D., Alexander, M. A., Pershing, A., Scott, J. D., and Wang, Z.: Projections of physical conditions in the Gulf of Maine in 2050, Elem. Sci. Anth., 9, 00055, https://doi.org/10.1525/elementa.2020.20.00055, 2021. a
Bryden, H. L., Longworth, H. R., and Cunningham, S. A.: Slowing of the Atlantic meridional overturning circulation at 25 N, Nature, 438, 655–657, 2005. a
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013. a
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, 2018. a
Candela, J., Tanahara, S., Crepon, M., Barnier, B., and Sheinbaum, J.: Yucatan Channel flow: Observations versus CLIPPER ATL6 and MERCATOR PAM models, J. Geophys. Res.-Oceans, 108, 3385, https://doi.org/10.1029/2003JC001961, 2003. a, b
CCHDO Hydrographic Data Office: CCHDO Hydrographic Data Archive, https://cchdo.ucsd.edu/ (last access: 1 February 2024), 2023. a
Centurioni, L. R. and Niiler, P. P.: On the surface currents of the Caribbean Sea, Geophys. Res. Lett., 30, 1279, https://doi.org/10.1029/2002GL016231, 2003. a
Chamberlain, M. A., Sun, C., Matear, R. J., Feng, M., and Phipps, S. J.: Downscaling the climate change for oceans around Australia, Geosci. Model Dev., 5, 1177–1194, https://doi.org/10.5194/gmd-5-1177-2012, 2012. a
Chollett, I., Mumby, P. J., Müller-Karger, F. E., and Hu, C.: Physical environments of the Caribbean Sea, Limnol. Oceanogr., 57, 1233–1244, 2012. a
Coles, V. J., Brooks, M. T., Hopkins, J., Stukel, M. R., Yager, P. L., and Hood, R. R.: The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean, J. Geophys. Res.-Oceans, 118, 6894–6913, https://doi.org/10.1002/2013JC008981, 2013. a
Corredor, J. E. and Morell, J. M.: Seasonal variation of physical and biogeochemical features in eastern Caribbean Surface Water, J. Geophys. Res.-Oceans, 106, 4517–4525, https://doi.org/10.1029/2000JC000291, 2001. a, b, c, d
Danabasoglu, G., Large, W. G., Tribbia, J. J., Gent, P. R., Briegleb, B. P., and McWilliams, J. C.: Diurnal coupling in the tropical oceans of CCSM3, J. Climate, 19, 2347–2365, 2006. a
Danabasoglu, G., Yeager, S.G., Bailey, D., Behrens, E., Bentsen, M., Bi, D., Biastoch, A., Böning, C., Bozec, A., Canuto, V. M., Cassou, C., Chassignet, E., Coward, A. C., Danilov, S., Diansky, N., Drange, H., Farneti, R., Fernandez, E., Fogli, P. G., Forget, G., Fujii, Y., Griffies, S. M., Gusev, A., Heimbach, P., Howard, A., Jung, T., Kelley, M., Large, W. G., Leboissetier, A., Lu, J., Madec, G., Marsland, S. J., Masina, S., Navarra, A., Nurser, A.J. G., Pirani, A., Salas y Mélia, D., Samuels, B. L., Scheinert, M., Sidorenko, D., Treguier, A-M., Tsujino, H., Uotila, P., Valcke, S., Voldoire, A., and Wang, Q.: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean states, Ocean Model., 73, 76–107, 2014. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2), J. Adv. Model. Earth Sy., 12, e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020 (code available at: https://www.cesm.ucar.edu:/models/cesm2/, last access: 13 December 2024). a, b, c
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
Digna, T. R.-R., Tal, E., and Frank, E. M.-K.: Description and Mechanisms of the Mid-Year Upwelling in the Southern Caribbean Sea from Remote Sensing and Local Data, J. Mar. Sci. Eng., 6, 36, https://doi.org/10.3390/jmse6020036, 2018. a, b
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002 (data available at: https://www.tpxo.net/home, last access: 24 March 2023). a, b
European Union-Copernicus Marine Service: Global Ocean Physics Reanalysis, Mercator Ocean International [data set], https://doi.org/10.48670/MOI-00021, 2018. a
European Union-Copernicus Marine Service: Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD, Mercator Ocean International [data set], https://doi.org/10.48670/MOI-00052, 2020. a
European Union-Copernicus Marine Service: Global Total (COPERNICUS-GLOBCURRENT), Ekman and Geostrophic currents at the Surface and 15m, Mercator Ocean International [data set], https://doi.org/10.48670/MDS-00327, 2023. a
Frajka-Williams, E., Ansorge, I.J., Baehr, J., Bryden, H.L., Chidichimo, M.P., Cunningham, S.A., Danabasoglu, G., Dong, S., Donohue, K.A., Elipot, S., Heimbach, P., Holliday, N.P., Hummels, R., Jackson. L,C,, Karstensen, J., Lankhorst, M., Le Bras, I.A., Lozier, M.S., McDonagh, E.L., Meinen, C.S., Mercier, H., Moat, B.I., Perez, R.C., Piecuch, C.G., Rhein, M., Srokosz, M.A., Trenberth, K.E., Bacon, S., Forget, G., Goni, G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G.D., Mertens, C., Send, U., Smeed, D.A., Speich, S., van den Berg, M., Volkov, D., and Wilson, C.: Atlantic meridional overturning circulation: Observed transport and variability, Front. Mar. Sci., 6, 260, https://doi.org/10.3389/fmars.2019.00260, 2019. a
Giese, G. S., Chapman, D. C., Black, P. G., and Fornshell, J. A.: Causation of large-amplitude coastal seiches on the Caribbean coast of Puerto Rico, J. Phys. Oceanogr., 20, 1449–1458, 1990. a
Godfrey, J. and Lindstrom, E.: The heat budget of the equatorial western Pacific surface mixed layer, J. Geophys. Res.-Oceans, 94, 8007–8017, 1989. a
Griffies, S. M., Levy, M., Adcroft, A. J., Danabasoglu, G., Hallberg, R. W., Jacobsen, D. J., Large, W. G., Reichl, B., Ringler, T. D., and Van Roekel, L. P.: The Community ocean Vertical Mixing (CVMix) project, Zenodo, https://doi.org/10.5281/zenodo.1000801, 2017. a, b, c
Griffies, S. M. and Hallberg, R. W.: Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models, Mon. Weather Rev., 128, 2935–2946, https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2, 2000. a
Grodsky, S. A., Johnson, B. K., Carton, J. A., and Bryan, F. O.: Interannual Caribbean salinity in satellite data and model simulations, J. Geophys. Res.-Oceans, 120, 1375–1387, https://doi.org/10.1002/2014JC010625, 2015. a, b
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012. a
Hormann, V., Centurioni, L. R., and Reverdin, G.: Evaluation of drifter salinities in the subtropical North Atlantic, J. Atmos. Ocean. Tech., 32, 185–192, 2015. a
Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., Folini, D., Ji, D., Klocke, D., Qian, Y., Rauser, F., Rio, C., Tomassini, L., Watanabe, M., and Williamson, D.: The Art and Science of Climate Model Tuning, B. Am. Meteor. Soc., 98, 589–602, https://doi.org/10.1175/BAMS-D-15-00135.1, 2017. a
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2021 (data available at: https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html, last access: 15 December 2023). a, b, c
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A Framework for Collaborative Research, B. Am. Meteor. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a
Jackson, L., Hallberg, R., and Legg, S.: A parameterization of shear-driven turbulence for ocean climate models, J. Phys. Oceanogr., 38, 1033–1053, 2008. a
Jean-Michel, L., Eric, G., Romain, B.-B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., Charly, R., Tony, C., Charles-Emmanuel, T., Florent, G., Giovanni, R., Mounir, B., Yann, D., and Pierre-Yves, L. T.: The Copernicus global 1/12 oceanic and sea ice GLORYS12 reanalysis, Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876, 2021. a, b, c
Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Schrier, G. V. D.: Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Sci. Rep., 6, 33130, 2016. a
Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M., Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.-F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability, B. Am. Meteor. Soc., 96, 1333–1349, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015. a
Kirtman, B. P., Bitz, C., Bryan, F., Collins, W., Dennis, J., Hearn, N., Kinter, J. L., Loft, R., Rousset, C., Siqueira, L., and Stan, C.: Impact of ocean model resolution on CCSM climate simulations, Clim. Dynam., 39, 1303–1328, 2012. a
Kjerfve, B.: Tides of the Caribbean sea, J. Geophys. Res.-Oceans, 86, 4243–4247, 1981. a
Lange, M. and van Sebille, E.: Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age, Geosci. Model Dev., 10, 4175–4186, https://doi.org/10.5194/gmd-10-4175-2017, 2017. a
Large, W. and Danabasoglu, G.: Attribution and impacts of upper-ocean biases in CCSM3, J. Climate, 19, 2325–2346, 2006. a
Large, W. and Pond, S.: Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336, 1981. a
Lukas, R. and Lindstrom, E.: The mixed layer of the western equatorial Pacific Ocean, J. Geophys. Res.-Oceans, 96, 3343–3357, 1991. a
Manizza, M., Le Quéré, C., Watson, A. J., and Buitenhuis, E. T.: Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model, Geophys. Res. Lett., 32, L05603, https://doi.org/10.1029/2004GL020778, 2005. a
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary conditions for long-term integration of regional oceanic models, Ocean Model., 3, 1–20, 2001. a
Meehl, G. A., Moss, R., Taylor, K. E., Eyring, V., Stouffer, R. J., Bony, S., and Stevens, B.: Climate Model Intercomparisons: Preparing for the Next Phase, Eos, Transactions American Geophysical Union, 95, 77–78, https://doi.org/10.1002/2014EO090001, 2014. a
Mercator Ocean: Global ocean gridded l4 sea surface heights and derived variables reprocessed (1993–ongoing), Mercator Ocean International [data set], https://doi.org/10.48670/MOI-00148, 2021. a
Miloslavich, P., Díaz, J. M., Klein, E., Alvarado, J. J., Díaz, C., Gobin, J., Escobar-Briones, E., Cruz-Motta, J. J., Weil, E., Cortes, J., and Bastidas, A. C.: Marine biodiversity in the Caribbean: regional estimates and distribution patterns, PloS one, 5, e11916, 2010. a
Morell, J. M., Corredor, J. E., and Merryfield, W. J.: Thermohaline staircases in a Caribbean eddy and mechanisms for staircase formation, Deep-Sea Res. Pt. II, 53, 128–139, 2006. a
Mukherjee, S., Wilson, D., Jobsis, P., and Habtes, S.: Numerical modeling of internal tides and submesoscale turbulence in the US Caribbean regional ocean, Sci. Rep., 13, 1091, https://doi.org/10.1038/s41598-023-27944-2, 2023. a
Mulet, S., Rio, M.-H., Mignot, A., Guinehut, S., and Morrow, R.: A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements- Deep-Sea Res. Pt. II, 77–80, 70–81, 2012. a
NASA Ocean Biology Processing Group: SEAWIFS-ORBVIEW-2 Level 3 Mapped Chlorophyll Data Version R2018.0, NASA Ocean Biology Distributed Active Archive Center [data set], https://doi.org/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018, 2018. a
Reichl, B. G. and Hallberg, R.: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations, Ocean Model., 132, 112–129, 2018. a
Restrepo, J. C., Ortíz, J. C., Pierini, J., Schrottke, K., Maza, M., Otero, L., and Aguirre, J.: Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes, J. Hydrol., 509, 266–281, 2014. a
Restrepo, J. C., Higgins, A., Escobar, J., Ospino, S., and Hoyos, N.: Contribution of low-frequency climatic–oceanic oscillations to streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia), Hydrol. Earth Syst. Sci., 23, 2379–2400, https://doi.org/10.5194/hess-23-2379-2019, 2019. a, b
Richards, K. J., Whitt, D. B., Brett, G., Bryan, F. O., Feloy, K., and Long, M. C.: The impact of climate change on ocean submesoscale activity, J. Geophys. Res.-Oceans, 126, e2020JC016750, https://doi.org/10.1029/2020jc016750, 2021. a, b
Roberts, M. J., Hewitt, H. T., Hyder, P., Ferreira, D., Josey, S. A., Mizielinski, M., and Shelly, A.: Impact of ocean resolution on coupled air-sea fluxes and large-scale climate, Geophys. Res. Lett., 43, 10–430, 2016. a
Ross, A. C., Stock, C. A., Adcroft, A., Curchitser, E., Hallberg, R., Harrison, M. J., Hedstrom, K., Zadeh, N., Alexander, M., Chen, W., Drenkard, E. J., du Pontavice, H., Dussin, R., Gomez, F., John, J. G., Kang, D., Lavoie, D., Resplandy, L., Roobaert, A., Saba, V., Shin, S.-I., Siedlecki, S., and Simkins, J.: A high-resolution physical–biogeochemical model for marine resource applications in the northwest Atlantic (MOM6-COBALT-NWA12 v1.0), Geosci. Model Dev., 16, 6943–6985, https://doi.org/10.5194/gmd-16-6943-2023, 2023. a
Rudzin, J., Shay, L. K., Jaimes, B., and Brewster, J.: Upper ocean observations in eastern Caribbean Sea reveal barrier layer within a warm core eddy, J. Geophys. Res.-Oceans, 122, 1057–1071, 2017. a
Sadourny, R.: The dynamics of finite-difference models of the shallow-water equations, J. Atmos. Sci., 32, 680–689, 1975. a
Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation, Nature, 428, 160–163, 2004. a
Seijo-Ellis, G. and Giglio, D.: Trajectories of backtracked passive particles for: “CARIB12: A Regional Community Earth System Model/Modular Ocean Model 6 Configuration of the Caribbean Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.11267616, 2024.
Seijo-Ellis, G., Lindo-Atichati, D., and Salmun, H.: Vertical Structure of the Water Column at the Virgin Islands Shelf Break and Trough, J. Mar. Sci. Eng., 7, 74, https://doi.org/10.3390/jmse7030074, 2019. a, b
Seijo-Ellis, G., Giglio, D., Marques, G., and Bryan, F.: Model source code for CESM2 version cesm2_3_alpha16b as used in “CARIB12: A Regional Community Earth System Model/Modular Ocean Model 6 Configuration of the Caribbean Sea”, Zenodo [code], https://doi.org/10.5281/zenodo.11289425, 2024a. a
Seijo-Ellis, G., Giglio, D., Marques, G., and Bryan, F.: Model configuration and input files for: “CARIB12: A Regional Community Earth System Model/Modular Ocean Model 6 Configuration of the Caribbean Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.11165669, 2024b. a
Seijo-Ellis, G., Giglio, D., Marques, G., and Bryan, F.: Model output for: “CARIB12: A Regional Community Earth System Model/Modular Ocean Model 6 Configuration of the Caribbean Sea”, Zenodo [data set], https://doi.org/10.5281/zenodo.11264010, 2024c. a
Sheinbaum, J., Candela, J., Badan, A., and Ochoa, J.: Flow structure and transport in the Yucatan Channel, Geophy. Res. Lett., 29, https://doi.org/10.1029/2001GL013990, 2002. a, b, c
Solano, M., Canals, M., and Leonardi, S.: Development and validation of a coastal ocean forecasting system for Puerto Rico and the US Virgin Islands, J. Ocean Eng. Sci., 3, 223–236, 2018. a
Sosa, E. A.: Variabilidad Temporal de la Produccion Primaria Fitoplanctonica en la Estacion CATS: Con Enfasis en el Impacto de la Mare Interna Semidiurna sobre la Produccion, PhD thesis, University of Puerto Rico – Mayaguez, 2001. a
Southwick, O., Johnson, E., and McDonald, N.: A simple model for sheddies: Ocean eddies formed from shed vorticity, J. Phys. Oceanogr., 46, 2961–2979, 2016. a
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections, Philos. T. Roy. Soc. A, 365, 2053–2075, 2007. a
Tozer, B., Sandwell, D. T., Smith, W. H., Olson, C., Beale, J., and Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Earth Space Sci., 6, 1847–1864, 2019. a
Treguier, A. M., de Boyer Montégut, C., Bozec, A., Chassignet, E. P., Fox-Kemper, B., McC. Hogg, A., Iovino, D., Kiss, A. E., Le Sommer, J., Li, Y., Lin, P., Lique, C., Liu, H., Serazin, G., Sidorenko, D., Wang, Q., Xu, X., and Yeager, S.: The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies, Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, 2023. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., and Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139, 2018. a
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020. a, b
Tucker, T., Giglio, D., Scanderbeg, M., and Shen, S. S. P.: Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data, J. Atmos. Ocean. Technol., 37, 401–416, https://doi.org/10.1175/JTECH-D-19-0041.1, 2020. a
Zhuang, J., Dussin, R., Huard, D., Bourgault, P., Banihirwe, A., Raynaud, S., Malevich, B., Schupfner, M., Fernandes, F., Gauthier, C., Levang, S., Juling, A., Almansi, M., Scott, R., Rondeau, G., Rasp, S., Smith, T. J., Mares, B., Stachelek, J., Plough, M., Manchon, P., Bell, R., Caneill, R., and Li, X.: pangeo-data/xESMF: v0.8.2, Zenodo, https://doi.org/10.5281/zenodo.4294774, 2023. a
Zsoter, E., Harrigan, S., Barnard, C., Wetterhall, F., Ferrario, I., Mazzetti, C., Alfieri, L., Salamon, P., and Prudhomme, C.: River discharge and related historical data from the Global Flood Awareness System, v3.1. European Commission, Joint Research Centre (JRC), https://doi.org/10.24381/cds.a4fdd6b9, 2021. a
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising...