Articles | Volume 17, issue 2
https://doi.org/10.5194/gmd-17-709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-709-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Monsoon Mission Coupled Forecast System version 2.0: model description and Indian monsoon simulations
Deepeshkumar Jain
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
NCMRWF, Ministry of Earth Sciences, A50, Noida, 201309, UP, India
Suryachandra A. Rao
CORRESPONDING AUTHOR
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Ramu A. Dandi
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Prasanth A. Pillai
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Ankur Srivastava
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Maheswar Pradhan
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Kiran V. Gangadharan
Monsoon Mission, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pashan, Pune, 411008, Maharashtra, India
Related authors
No articles found.
Ankur Srivastava, Gill M. Martin, Maheswar Pradhan, Suryachandra A. Rao, and Sarah Ineson
EGUsphere, https://doi.org/10.5194/egusphere-2025-2303, https://doi.org/10.5194/egusphere-2025-2303, 2025
Short summary
Short summary
This study documents the dynamics behind the first occurrence of a multi-year negative Indian Ocean Dipole (nIOD) event during 2021–2022, which lasted for an unprecedented 19 months! The event was sustained by the triple-dip La Niña event of 2020–2022. The conducive background state led to anomalous westerly wind activity and a record number and duration of westerly-wind bursts in the equatorial Indian Ocean. The resulting modulation of Wyrtki jets aided the sustenance of the nIOD event.
Bipin Kumar, Rahul Ranjan, Man-Kong Yau, Sudarsan Bera, and Suryachandra A. Rao
Atmos. Chem. Phys., 21, 12317–12329, https://doi.org/10.5194/acp-21-12317-2021, https://doi.org/10.5194/acp-21-12317-2021, 2021
Short summary
Short summary
The characteristics of turbulent clouds are affected by the entrainment of ambient dry air and its subsequent mixing. A turbulent flow generates vorticities of different intensities, and regions with high vorticity (HV) and low vorticity (LV) exist. This study provides a detailed analysis of different properties of turbulent flows and cloud droplets in the HV and LV regions in order to understand the impact of vorticity production on cloud microphysical and mixing processes.
Cited articles
Adcroft, A.: Modular Ocean model (mom), GFDL [code], https://www.gfdl.noaa.gov/mom-ocean-model/ (last access: 30 December 2023), 2016.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., and Gruber, A.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003.
Ahmadabadi, A., Fathnia, M., Ahmadabad, K., and Farajzadeh, M.: The accuracy of SST retrievals from NOAA-AVHRR in the Persian Gulf, J. Appl. Sci., 9, 1378–1382, https://doi.org/10.3923/jas.2009.1378.1382, 2009.
Ashok, K., Guan, Z., Saji, N. H., and Yamagata, T.: Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon, J. Climate, 17, 3141–3155, https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2, 2004.
Bailey, D., DuVivier, A., Holland, M., Hunke, E., Lipscomb, B., Briegleb, B., Bitz, C., and Schramm, J.: CESM CICE5 User's Guide, https://media.readthedocs.org/pdf/cesmcice/latest/cesmcice.pdf (last access: 28 December 2023), 2018.
Balaji, V.: FMS: the GFDL Flexible Modeling System, Princeton, NJ, https://extranet.gfdl.noaa.gov/~vb/talks/fms2004.pdf (last access: 30 December 2023), 2004.
Benke, M., Takle, J., Pai, D. S., and Rao, S. A.: Analysis of Monsoon Mission Coupled Forecasting System (MMCFS) model simulations of sub-division scale temperatures over India for the hot weather season (April–June), J. Earth Syst. Sci., 128, 182, https://doi.org/10.1007/s12040-019-1178-6, 2019.
Black, T., Juang, H. M. H., and Iredell, M.: The NOAA Environmental Modeling System at NCEP, Preprints, 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, Omaga, NE, USA, 1–5 June 2009, Ameri. Met. Soc., 2 A.6, https://ams.confex.com/ams/23WAF19NWP/webprogram/Paper154223.html (last access: 15 January 2024), 2009.
Chaudhari, H. S., Pokhrel, S., Saha, S. K., Dhakate, A., Yadav, R. K., Salunke, K., Mahapatra, S., Sabeerali, C. T., and Rao, S. A.: Model biases in long coupled runs of NCEP CFS in the context of Indian summer monsoon, Int. J. Climatol., 33, 1057–1069, https://doi.org/10.1002/joc.3489, 2013.
Choudhury, B. A., Rajesh, P. V., Zahan, Y., and Goswami, B. N.: Evolution of the Indian summer monsoon rainfall simulations from CMIP3 to CMIP6 models, Clim. Dynam., 58, 2637–2662, https://doi.org/10.1007/s00382-021-06023-0, 2021.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
DelSole, T. and Tippett, M. K.: Predictability: Recent insights from information theory, Rev. Geophys., 45, RG4002, https://doi.org/10.1029/2006RG000202, 2007.
Ding, H., Keenlyside, D. S., and Latif, M.: Equatorial Atlantic interannual variability: Role of heat content, J. Geophys. Res.-Oceans, 115, C09020, https://doi.org/10.1029/2010JC006304, 2010.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Farneti, R., Stiz, A., and Ssebandeke, J. B.: Improvements and persistent biases in the southeast tropical Atlantic in CMIP models, npj Climate and Atmospheric Science, 5, 42, https://doi.org/10.1038/s41612-022-00264-4, 2022.
Findlater, J.: A major low-level air current near the Indian ocean during the northern summer, Q. J. Roy. Meteor. Soc., 95, 362–380, https://doi.org/10.1002/qj.49709540409, 1969.
Gadgil, S.: The Indian monsoon and its variability, Annu. Rev. Earth Pl. Sc., 31, 429–467, https://doi.org/10.1146/annurev.earth.31.100901.141251, 2003.
Gadgil, S.: The Indian monsoon, GDP and agriculture, Econ. Polit. Weekly, 41, 4887–4895, https://www.jstor.org/stable/4418949 (last access: 30 December 2023), 2006.
George, G., Rao, D. N., Sabeerali, C., Srivastava, A., and Rao, S. A.: Indian summer monsoon prediction and simulation in cfsv2 coupled model, Atmos. Sci. Lett., 17, 57–64, https://doi.org/10.1002/asl.599, 2016.
Goswami, B. B., Deshpande, M., Mukhopadhyay, P., Saha, S. K., Rao, S. A., Murthugudde, R., and Goswami, B.: Simulation of monsoon intraseasonal variability in ncep cfsv2 and its role on systematic bias, Clim. Dynam., 43, 2725–2745, https://doi.org/10.1007/s00382-014-2089-5, 2014.
Griffies, S. M., Harrison, M. J., Pacanowski, R. C., and Rosati, A.: A technical guide to mom4, GFDL Ocean Group, Tech. Rep, 5, 342, https://www.gfdl.noaa.gov/bibliography/related_files/smg0301.pdf (last access: 5 January 2024), 2004.
Griffies, S. M., Adcroft, A., and Hallberg, R. W.: A primer on the vertical Lagrangian‐remap method in ocean models based on finite volume generalized vertical coordinates, J. Adv. Model. Earth Sy., 12, e2019 https://doi.org/10.1029/2019MS001954, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., and Simmons, A.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hill, C., DeLuca, C., Suarez, M., and Da Silva, A. R.: The architecture of the earth system modeling framework, Comput. Sci. Eng., 6, 18–28, https://doi.org/10.1109/MCISE.2004.1255817, 2004.
Huang, B., Thorne, P. W., Banzon, V.F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J., Smith, T. M., Vose, R. S., and Zhang, H.-M.: Extended reconstructed sea surface temperature, version 5 (ersstv5): upgrades, validations, and intercomparisons, J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1, 2017.
Huang, B., Angel, W., Boyer, T., Cheng, L., Chepurin, G., Freeman, E., Liu, C., and Zhang, H.-M.: Evaluating SST analyses with independent ocean profile observations, J. Climate, 31, 5015–5030, https://doi.org/10.1175/JCLI-D-17-0824.1, 2018.
Huang, B., Liu, C., Ren, G., Zhang, H.-M., and Zhang, L.: The role of buoy and Argo observations in two SST analyses in the global and tropical pacific oceans, J. Climate, 32, 2517–2535, https://doi.org/10.1175/JCLI-D-18-0368.1, 2019.
Huang, B., Menne, M. J., Boyer, T., Freeman, E., Gleason, B. E., Lawrimore, J. H., Liu, C., Rennie, J. J., Schreck, C. J., Sun, F., and Vose, R.: Uncertainty estimates for sea surface temperature and land surface air temperature in NOAA GlobalTemp version 5, J. Climate, 33, 1351–1379, https://doi.org/10.1175/JCLI-D-19-0395.1, 2020.
Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., Elliott, S.: CICE – The Los Alamos Sea ice model documentation and software user's manual version 5.1, LA-CC-06-012, Los Alamos National Laboratory, Santa Fe, NM, USA, 115, https://svn-ccsm-models.cgd.ucar.edu/cesm1/alphas/branches/cesm1_5_alpha04c_timers/components/cice/src/doc/cicedoc.pdf (last access: 5 January 2024), 2015.
Jain, D.: MMCFSv2 Code, Zenodo [code], https://doi.org/10.5281/zenodo.7905721, 2023a.
Jain, D.: Data for MMCFSv2 Manuscript Submitted to GMD, Zenodo [data set], https://doi.org/10.5281/zenodo.7900790, 2023b.
Jain, D.: MMCFSv2 initial conditions 1998 1999 and 2000, Zenodo [data set], https://doi.org/10.5281/zenodo.7935628, 2023c.
Jain, D.: MMCFSv2 initial conditions 2001 2002 and 2003, Zenodo [data set], https://doi.org/10.5281/zenodo.7947318, 2023d.
Jain, D.: MMCFSv2 initial conditions 2004, 2005 and 2006 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7947974, 2023e.
Jain, D.: MMCFSv2 initial conditions 2007, 2008, and 2009 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7948155, 2023f.
Jain, D.: MMCFSv2 initial conditions 2010, 2011 and 2012 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7949802, 2023g.
Jain, D.: MMCFSv2 initial conditions 2013, 2014 and 2015 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7950855, 2023h.
Jain, D.: MMCFSv2 initial conditions 2016, 2017 and 2018 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7949863, 2023i.
Jain, D.: MMCFSv2 initial conditions 2019, 2020 and 2021 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7950964, 2023j.
Jain, D.: MMCFSv2 initial conditions 2022 for the simulations reported in GMD manuscript, Zenodo [data set], https://doi.org/10.5281/zenodo.7951983, 2023k.
Jansen, M. F., Adcroft, A. J., Hallberg, R., and Held, I. M.: Parameterization of eddy fluxes based on a mesoscale energy budget, Ocean Model., 92, 28–41, https://doi.org/10.1016/j.ocemod.2015.05.007, 2015.
Jansen, M. F., Adcroft, A., Khani, S., and Kong, H.: Toward an energetically consistent, resolution aware parameterization of ocean mesoscale eddies, J. Adv. Model. Earth Sy., 11, 2844–2860, https://doi.org/10.1029/2019MS001750, 2019.
Jiang, X., Li, T., and Wang, B.: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation, J. Climate, 17, 1022–1039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2, 2004.
Joseph, P. and Raman, P.: Existence of low-level westerly jet stream over peninsular India during July, Mausam, 17, 407–410, https://doi.org/10.54302/mausam.v17i3.5731, 1966.
Kleeman, R.: Measuring dynamical prediction utility using relative entropy, J. Atmos. Sci., 59, 2057–2072, https://doi.org/10.1175/1520-0469(2002)059<2057:MDPUUR>2.0.CO;2, 2002.
Krishna, R., Rao, S. A., Srivastava, A., Kottu, H. P., Pradhan, M., Pillai, P., Dandi, R. A., and Sabeerali, C.: Impact of convective parameterization on the seasonal prediction skill of Indian summer monsoon, Clim. Dynam., 53, 6227–6243, https://doi.org/10.1007/s00382-019-04921-y, 2019.
Krishnamurti, T. N. and Bhalme, H.: Oscillations of a monsoon system. part I. observational aspects, J. Atmos. Sci., 33, 1937–1954, https://doi.org/10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2, 1976.
Kumar, J. R. and Dash, S.: Inter-annual and intra-seasonal variation of some characteristics of monsoon disturbances formed over the bay, Mausam, 50, 55–62, https://doi.org/10.54302/mausam.v50i1.1804, 1999a.
Kumar, K. K., Rajagopalan, B., and Cane, M. A.: On the weakening relationship between the Indian monsoon and ENSO, Science, 284, 2156–2159, https://doi.org/10.1126/science.284.5423.2156, 1999b.
Mohan, R. A. and Goswami, B.: A common spatial mode for intra-seasonal and inter-annual variation and predictability of the Indian summer monsoon, Current Science, 79, 1106–1111, 2000.
Moorthi, S., Pan, H. L., and Caplan, P.: Changes to the 2001 NCEP Operational MRF/AVN Global Analysis/Forecast System, Tech. Proced. Bull., Ser. No. 484, Natl. Weather Serv., Off. of Meteorol., https://books.google.co.in/books?id=3WKJHAAACAAJ (last access: 5 January 2024), 2001.
Mukhopadhyay, P., Prasad, V. S., Phani, R., Deshpande, M., Ganai, M., Tirkey, S., and Sarkar, S.: Performance of a very high-resolution global forecast system model (GFS T1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons, J. Earth Syst. Sci., 128, 155, https://doi.org/10.1007/s12040-019-1186-6, 2019.
Munot, A. and Kothawale, D.: Intra-seasonal, inter-annual and decadal scale variability in summer monsoon rainfall over India, Int. J. Climatol., 20, 1387–1400, https://doi.org/10.1002/1097-0088(200009)20:11<1387::AID-JOC540>3.0.CO;2-Z, 2000.
Pai, D. S., Rajeevan, M., Sreejith, O. P., Mukhopadhyay, B., and Satbha, N. S.: Development of a new high spatial resolution (0.25∘ × 0.25∘) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region, Mausam, 65, 1–18, https://doi.org/10.54302/mausam.v65i1.851, 2014.
Parthasarathy, B., Kumar, K. R., and Munot, A.: Homogeneous Indian monsoon rainfall: variability and prediction, P. Indian AS.-Earth, 102, 121–155, https://doi.org/10.1007/BF02839187, 1993.
Pillai, P. A., Rao, S. A., Ramu, D. A., Pradhan, M., and George, G.: Seasonal prediction skill of Indian summer monsoon rainfall in NMME models and monsoon mission cfsv2, Int. J. Climatol., 38, 847–861, https://doi.org/10.1002/joc.5413, 2018a.
Pillai, P. A., Rao, S. A., Das, R. S., Salunke, K., and Dhakate, A.: Potential predictability and actual skill of Boreal Summer Tropical SST and Indian summer monsoon rainfall in CFSv2-T382: Role of initial SST and teleconnections, Clim. Dynam., 51, 493–510, https://doi.org/10.1007/s00382-017-3936-y, 2018b.
Pillai, P. A., Rao, S. A., Srivastava, A., Ramu, D., Pradhan, M., and Das, R. S.: Impact of the tropical pacific SST biases on the simulation and prediction of Indian summer monsoon rainfall in cfsv2, ECMWF system4, and NMME models, Clim. Dynam., 56, 1699–1715, https://doi.org/10.1007/s00382-020-05555-1, 2021.
Pillai, P. A., Rao, S. A., Gangadharan, K. V., Pradhan, M., Srivastava, A., and Jain, D. K.: Impact of reduced ENSO variability and amplitude on ISMR prediction in the long-lead forecasts of monsoon mission CFS, Int. J. Climatol., 42, 9166–9181, https://doi.org/10.1002/joc.7809, 2022.
Pokhrel, S., Rahaman, H., Parekh, A., Saha, S. K., Dhakate, A., Chaudhari, H. S., and Gairola, R. M.: Evaporation-precipitation variability over Indian ocean and its assessment in NCEP climate forecast system (cfsv2), Clim. Dynam., 39, 2585–2608, https://doi.org/10.1007/s00382-012-1542-6, 2012.
Pradhan, M., Rao, S. A., Bhattacharya, A., and Balasubramanian, S.: Improvements in diurnal cycle and its impact on seasonal mean by incorporating COARE flux algorithm in CFS, Frontiers in Climate, 198, 792980, https://doi.org/10.3389/fclim.2021.792980, 2022.
Rajeevan, M. and Francis, P.: Monsoon variability Links to major oscillations over the equatorial pacific and Indian oceans, Current Science, 93, 182–194, 2007.
Rajeevan, M. and Pai, D.: On the El Nino-Indian monsoon predictive relationships, Geophys. Res. Lett., 34, L04704, https://doi.org/10.1029/2006GL028916, 2007.
Rajeevan, M., Bhate, J., Kale, J., and Lal, B.: High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells, Current Science, 91, 296–306, 2006.
Ramu, D. A., Sabeerali, C., Chattopadhyay, R., Rao, D. N., George, G., Dhakate, A., Salunke, K., Srivastava, A., and Rao, S. A.: Indian summer monsoon rainfall simulation and prediction skill in the cfsv2 coupled model: Impact of atmospheric horizontal resolution, J. Geophys. Res.-Atmos. 121, 2205–2221, https://doi.org/10.1002/2015JD024629, 2016.
Rao, S. A., Luo, J.-J., Behera, S. K., and Yamagata, T.: Generation and termination of Indian ocean dipole events in 2003, 2006 and 2007, Clim. Dynam., 33, 751–767, DOI https://doi.org/10.1007/s00382-008-0498-z, 2009.
Rao, S. A., Goswami, B. N., Sahai, A. K., Rajagopal, E. N., Mukhopadhyay, P., Rajeevan, M., Nayak, S., Rathore, L. S., Shenoi, S. S. C., Ramesh, K. J., and Nanjundiah, R. S.: Monsoon mission: a targeted activity to improve monsoon prediction across scales, B. Am. Meteorol. Soc., 100, 2509–2532, https://doi.org/10.1175/BAMS-D-17-0330.1, 2019.
Reichl, B. G. and Hallberg, R.: A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations, Ocean Model., 132, 112–129, https://doi.org/10.1016/j.ocemod.2018.10.004, 2018.
Sabeerali, C., Ajayamohan, R., Bangalath, H. K., and Chen, N.: Atlantic zonal mode: an emerging source of Indian summer monsoon variability in a warming world, Geophys. Res. Lett., 46, 4460–4467, https://doi.org/10.1029/2019GL082379, 2019.
Sabeerali, C. T., Ramu Dandi, A., Dhakate, A., Salunke, K., Mahapatra, S., and Rao, S. A.: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs, J. Geophys. Res.-Atmos., 118, 4401–4420, https://doi.org/10.1002/jgrd.50403, 2013.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D., and Liu, H.: The NCEP climate forecast system reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1, 2010.
Saha, S. K., Pokhrel, S., Chaudhari, H. S., Dhakate, A., Shewale, S., Sabeerali, C., Salunke, K., Hazra, A., Mahapatra, S., and Rao, A. S.: Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run, Int. J. Climatol., 34, 1628–1641, https://doi.org/10.1002/joc.3791, 2014a.
Saha, S., Shrinivas, M., Xingren, W., Jiande, W., Sudhir, N., Patrick, T., and Behringer, D.: The NCEP climate forecast system version 2, J. Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014b.
Saji, N., Goswami, B. N., Vinayachandran, P., and Yamagata, T.: A dipole mode in the tropical Indian ocean, Nature, 401, 360–363, https://doi.org/10.1038/43854, 1999.
Sela, J. G.: The derivation of the sigma pressure hybrid coordinate semi-Lagrangian model equations for the GFS, https://repository.library.noaa.gov/view/noaa/6971 (last access: 5 January 2024), 2010.
Semtner Jr., A. J.: A model for the thermodynamic growth of sea ice in numerical investigations of climate, J. Phys. Oceanogr., 6, 379–389, https://doi.org/10.1175/1520-0485(1976)006<0379:AMFTTG>2.0.CO;2, 1976.
Singh, P., Vasudevan, V., Chowdary, J., and Gnanaseelan, C.: Subseasonal variations of Indian summer monsoon with special emphasis on drought and excess rainfall years, Int. J. Climatol., 35, 570–582, https://doi.org/10.1002/joc.4004, 2015.
Srivastava, A., Rao, S. A., Pradhan, M., Pillai, P. A., and Prasad, V.: Gain of one-month lead time in seasonal prediction of Indian summer monsoon prediction: comparison of initialization strategies, Theor. Appl. Climatol., 143, 1083–1096, https://doi.org/10.1007/s00704-020-03470-3, 2021.
Staniforth, A. and Jean, C.: Semi-Lagrangian integration schemes for atmospheric models, Mon. Weather Rev., 119, 2206–2223, https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2, 1991.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
Webster, P. J. and Yang, S.: Monsoon and Enso: Selectively interactive systems, Q. J. Roy. Meteor. Soc., 118, 877–926, https://doi.org/10.1002/qj.49711850705, 1992.
Webster, P. J., Clark C., Cherikova G., Fasullo J., Han W., Loschnigg J., and Sahami K.: The monsoon as a self-regulating coupled ocean-atmosphere system, International Geophysics, 83, 198–219, https://doi.org/10.1016/S0074-6142(02)80168-1, 2002.
Winton, M.: A reformulated three-layer sea ice model, J. Atmos. Ocean. Tech., 17, 525–531, https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2, 2000.
Zebiak, S. E.: Air–sea interaction in the equatorial Atlantic region, J. Climate, 6, 1567–1586, https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2, 1993.
Zheng, Y., Shinoda, T., Lin, J.-L., and Kiladis, G. N.: Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19 IPCC ar4 coupled general circulation models, J. Climate, 24, 4139–4164, https://doi.org/10.1175/2011JCLI4172.1, 2011.
Short summary
The present paper discusses and evaluates the new Monsoon Mission Coupled Forecast System model (MMCFS) version 2.0 which upgrades the currently operational MMCFS v1.0 at the Indian Meteorological Department, India. The individual model components have been substantially upgraded independently by their respective scientific groups. MMCFS v2.0 includes these upgrades in the operational coupled model. The new model shows significant skill improvement in simulating the Indian monsoon.
The present paper discusses and evaluates the new Monsoon Mission Coupled Forecast System model...