Articles | Volume 17, issue 14
https://doi.org/10.5194/gmd-17-5511-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-5511-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Gunilla Svensson
Department of Meteorology and Bolin Centre for Climate Change, Stockholm University, Stockholm, Sweden
Barbara Casati
Meteorological Research Division, Environment and Climate Change Canada, Dorval, Canada
Taneil Uttal
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Siri-Jodha Khalsa
National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, USA
Eric Bazile
Météo-France, Toulouse, France
Elena Akish
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Niramson Azouz
Météo-France, Toulouse, France
Lara Ferrighi
Norwegian Meteorological Institute, Oslo, Norway
Helmut Frank
Deutscher Wetterdienst, Offenbach, Germany
Michael Gallagher
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Øystein Godøy
Norwegian Meteorological Institute, Oslo, Norway
Leslie M. Hartten
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Laura X. Huang
Meteorological Research Division, Environment and Climate Change Canada, Dorval, Canada
Jareth Holt
Department of Meteorology and Bolin Centre for Climate Change, Stockholm University, Stockholm, Sweden
Massimo Di Stefano
Norwegian Meteorological Institute, Oslo, Norway
Irene Suomi
Finnish Meteorological Institute, Helsinki, Finland
Zen Mariani
Meteorological Research Division, Environment and Climate Change Canada, Dorval, Canada
Sara Morris
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Ewan O'Connor
Finnish Meteorological Institute, Helsinki, Finland
Roberta Pirazzini
Finnish Meteorological Institute, Helsinki, Finland
Teresa Remes
Norwegian Meteorological Institute, Oslo, Norway
Rostislav Fadeev
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Amy Solomon
NOAA Physical Science Laboratory, Boulder, Colorado, USA
Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado Boulder, Boulder, Colorado, USA
Johanna Tjernström
Swedish Meteorological and Hydrological Institute, Linköping, Sweden
Mikhail Tolstykh
Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
Hydrometeorological Research Centre of Russia, Moscow, Russia
Related authors
Johanna Tjernström, Michael Gallagher, Jareth Holt, Gunilla Svensson, Matthew D. Shupe, Jonathan J. Day, Lara Ferrighi, Siri Jodha Khalsa, Leslie M. Hartten, Ewan O'Connor, Zen Mariani, and Øystein Godøy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2088, https://doi.org/10.5194/egusphere-2024-2088, 2024
Short summary
Short summary
The value of numerical weather predictions can be enhanced in several ways, one is to improve the representations of small-scale processes in models. To understand what needs to be improved, the model results need to be evaluated. Following standardized principles, a file format has been defined to be as similar as possible for both observational and model data. Python packages and toolkits are presented as a community resource in the production of the files and evaluation analysis.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Jonathan J. Day, Sarah Keeley, Gabriele Arduini, Linus Magnusson, Kristian Mogensen, Mark Rodwell, Irina Sandu, and Steffen Tietsche
Weather Clim. Dynam., 3, 713–731, https://doi.org/10.5194/wcd-3-713-2022, https://doi.org/10.5194/wcd-3-713-2022, 2022
Short summary
Short summary
A recent drive to develop seamless forecasting systems has culminated in the development of weather forecasting systems that include a coupled representation of the atmosphere, ocean and sea ice. Before this, sea ice and sea surface temperature anomalies were typically fixed throughout a given forecast. We show that the dynamic coupling is most beneficial during periods of rapid ice advance, where persistence is a poor forecast of the sea ice and leads to large errors in the uncoupled system.
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
Tom Edinburgh and Jonathan J. Day
The Cryosphere, 10, 2721–2730, https://doi.org/10.5194/tc-10-2721-2016, https://doi.org/10.5194/tc-10-2721-2016, 2016
Short summary
Short summary
Contrary to expectations, Antarctic sea ice cover has been increasing in area during the last three decades. In order to put these trends into a wider context this paper analyses direct observations of sea ice, recorded in ships' logbooks during the Heroic Age of Antarctic Exploration (1887–1917) for the first time. It shows that the sea ice was significantly further north in the Weddell Sea during the period but comparable to the present day in other sectors.
Jonathan J. Day, Steffen Tietsche, Mat Collins, Helge F. Goessling, Virginie Guemas, Anabelle Guillory, William J. Hurlin, Masayoshi Ishii, Sarah P. E. Keeley, Daniela Matei, Rym Msadek, Michael Sigmond, Hiroaki Tatebe, and Ed Hawkins
Geosci. Model Dev., 9, 2255–2270, https://doi.org/10.5194/gmd-9-2255-2016, https://doi.org/10.5194/gmd-9-2255-2016, 2016
Short summary
Short summary
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable.
Johanna Tjernström, Michael Gallagher, Jareth Holt, Gunilla Svensson, Matthew D. Shupe, Jonathan J. Day, Lara Ferrighi, Siri Jodha Khalsa, Leslie M. Hartten, Ewan O'Connor, Zen Mariani, and Øystein Godøy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2088, https://doi.org/10.5194/egusphere-2024-2088, 2024
Short summary
Short summary
The value of numerical weather predictions can be enhanced in several ways, one is to improve the representations of small-scale processes in models. To understand what needs to be improved, the model results need to be evaluated. Following standardized principles, a file format has been defined to be as similar as possible for both observational and model data. Python packages and toolkits are presented as a community resource in the production of the files and evaluation analysis.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Shan Sun and Amy Solomon
The Cryosphere, 18, 3033–3048, https://doi.org/10.5194/tc-18-3033-2024, https://doi.org/10.5194/tc-18-3033-2024, 2024
Short summary
Short summary
The study brings to light the suitability of CICE for seasonal prediction being contingent on several factors, such as initial conditions like sea ice coverage and thickness, as well as atmospheric and oceanic conditions including oceanic currents and sea surface temperature. We show there is potential to improve seasonal forecasting by using a more reliable sea ice thickness initialization. Thus, data assimilation of sea ice thickness is highly relevant for advancing seasonal prediction skills.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Alexander Frank Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Nat. Hazards Earth Syst. Sci., 24, 2115–2132, https://doi.org/10.5194/nhess-24-2115-2024, https://doi.org/10.5194/nhess-24-2115-2024, 2024
Short summary
Short summary
The risk posed to ships by Arctic cyclones has seldom been quantified due to the lack of publicly available historical Arctic ship track data. This study investigates historical Arctic ship tracks, cyclone tracks, and shipping incident reports to determine the number of shipping incidents caused by the passage of Arctic cyclones. Results suggest that Arctic cyclones have not been hazardous to ships and that ships are resilient to the rough sea conditions caused by Arctic cyclones.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Christopher J. Cox, Janet M. Intrieri, Brian Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-158, https://doi.org/10.5194/essd-2024-158, 2024
Preprint under review for ESSD
Short summary
Short summary
Snow is an essential water resource in the intermountain western United States and predictions are made using models. We made observations to validate, constrain, and develop the models. The data is from the Study of Precipitation, the Lower Atmosphere, and Surface for Hydrometeorology (SPLASH) campaign in Colorado’s East River Valley, 2021–2023. The measurements include meteorology and variables that quantify energy transfer between the atmosphere and surface. The data are available publicly.
Natalie E. Theeuwes, Janet F. Barlow, Antti Mannisenaho, Denise Hertwig, Ewan O'Connor, and Alan Robins
EGUsphere, https://doi.org/10.5194/egusphere-2024-937, https://doi.org/10.5194/egusphere-2024-937, 2024
Short summary
Short summary
A doppler lidar was placed in highly built-up area in London to measure wakes from tall buildings during a period of one year. We were able to detect wakes and assess their dependence on wind speed, wind direction, and atmospheric stability.
Viet Le, Hannah Lobo, Ewan J. O'Connor, and Ville Vakkari
Atmos. Meas. Tech., 17, 921–941, https://doi.org/10.5194/amt-17-921-2024, https://doi.org/10.5194/amt-17-921-2024, 2024
Short summary
Short summary
This study offers a long-term overview of aerosol particle depolarization ratio at the wavelength of 1565 nm obtained from vertical profiling measurements by Halo Doppler lidars during 4 years at four different locations across Finland. Our observations support the long-term usage of Halo Doppler lidar depolarization ratio such as the detection of aerosols that may pose a safety risk for aviation. Long-range Saharan dust transport and pollen transport are also showcased here.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Lukas Frank, Marius Opsanger Jonassen, Teresa Remes, Florina Roana Schalamon, and Agnes Stenlund
Earth Syst. Sci. Data, 15, 4219–4234, https://doi.org/10.5194/essd-15-4219-2023, https://doi.org/10.5194/essd-15-4219-2023, 2023
Short summary
Short summary
The Isfjorden Weather Information Network (IWIN) provides continuous meteorological near-surface observations from Isfjorden in Svalbard. The network combines permanent automatic weather stations on lighthouses along the coast line with mobile stations on board small tourist cruise ships regularly trafficking the fjord during spring to autumn. All data are available online in near-real time. Besides their scientific value, IWIN data crucially enhance the safety of field activities in the region.
Maria Filioglou, Ari Leskinen, Ville Vakkari, Ewan O'Connor, Minttu Tuononen, Pekko Tuominen, Samuli Laukkanen, Linnea Toiviainen, Annika Saarto, Xiaoxia Shang, Petri Tiitta, and Mika Komppula
Atmos. Chem. Phys., 23, 9009–9021, https://doi.org/10.5194/acp-23-9009-2023, https://doi.org/10.5194/acp-23-9009-2023, 2023
Short summary
Short summary
Pollen impacts climate and public health, and it can be detected in the atmosphere by lidars which measure the linear particle depolarization ratio (PDR), a shape-relevant optical parameter. As aerosols also cause depolarization, surface aerosol and pollen observations were combined with measurements from ground-based lidars operating at different wavelengths to determine the optical properties of birch and pine pollen and quantify their relative contribution to the PDR.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023, https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Short summary
In this study, we show that recent versions of two atmospheric models – the Unified Model and Integrated Forecasting System – overestimate Arctic cloud fraction within the lower troposphere by comparison with recent remote-sensing measurements made during the Arctic Ocean 2018 expedition. The overabundance of cloud is interlinked with the modelled thermodynamic structure, with strong negative temperature biases coincident with these overestimated cloud layers.
Pyry Pentikäinen, Ewan J. O'Connor, and Pablo Ortiz-Amezcua
Geosci. Model Dev., 16, 2077–2094, https://doi.org/10.5194/gmd-16-2077-2023, https://doi.org/10.5194/gmd-16-2077-2023, 2023
Short summary
Short summary
We used Doppler lidar to evaluate the wind profiles generated by a weather forecast model. We first compared the Doppler lidar observations with co-located radiosonde profiles, and they agree well. The model performs best over marine and coastal locations. Larger errors were seen in locations where the surface was more complex, especially in the wind direction. Our results show that Doppler lidar is a suitable instrument for evaluating the boundary layer wind profiles in atmospheric models.
Felix Pithan, Marylou Athanase, Sandro Dahlke, Antonio Sánchez-Benítez, Matthew D. Shupe, Anne Sledd, Jan Streffing, Gunilla Svensson, and Thomas Jung
Geosci. Model Dev., 16, 1857–1873, https://doi.org/10.5194/gmd-16-1857-2023, https://doi.org/10.5194/gmd-16-1857-2023, 2023
Short summary
Short summary
Evaluating climate models usually requires long observational time series, but we present a method that also works for short field campaigns. We compare climate model output to observations from the MOSAiC expedition in the central Arctic Ocean. All models show how the arrival of a warm air mass warms the Arctic in April 2020, but two models do not show the response of snow temperature to the diurnal cycle. One model has too little liquid water and too much ice in clouds during cold days.
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023, https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Short summary
We investigated how different long-range-transported air masses can affect the microphysical properties of low-level clouds in a clean subarctic environment. A connection was revealed. Higher values of cloud droplet number concentrations were related to continental air masses, whereas the lowest values of number concentrations were related to marine air masses. These were characterized by larger cloud droplets. Clouds in all regions were sensitive to increases in cloud number concentration.
Simone Kotthaus, Juan Antonio Bravo-Aranda, Martine Collaud Coen, Juan Luis Guerrero-Rascado, Maria João Costa, Domenico Cimini, Ewan J. O'Connor, Maxime Hervo, Lucas Alados-Arboledas, María Jiménez-Portaz, Lucia Mona, Dominique Ruffieux, Anthony Illingworth, and Martial Haeffelin
Atmos. Meas. Tech., 16, 433–479, https://doi.org/10.5194/amt-16-433-2023, https://doi.org/10.5194/amt-16-433-2023, 2023
Short summary
Short summary
Profile observations of the atmospheric boundary layer now allow for layer heights and characteristics to be derived at high temporal and vertical resolution. With novel high-density ground-based remote-sensing measurement networks emerging, horizontal information content is also increasing. This review summarises the capabilities and limitations of various sensors and retrieval algorithms which need to be considered during the harmonisation of data products for high-impact applications.
Shan Sun and Amy Solomon
EGUsphere, https://doi.org/10.5194/egusphere-2022-1368, https://doi.org/10.5194/egusphere-2022-1368, 2022
Preprint archived
Short summary
Short summary
We evaluate sea ice prediction skill at seasonal time scales using the CICE sea ice model. It confirms the importance of the accuracy in ice thickness initialization for seasonal sea ice prediction. It suggests that there exists a potentially important source of additional skill in seasonal forecasting, namely, a more reliable sea ice thickness initialization. Hence, assimilation of sea ice thickness appears to be highly relevant for advancing seasonal prediction skill.
Zen Mariani, Laura Huang, Robert Crawford, Jean-Pierre Blanchet, Shannon Hicks-Jalali, Eva Mekis, Ludovick Pelletier, Peter Rodriguez, and Kevin Strawbridge
Earth Syst. Sci. Data, 14, 4995–5017, https://doi.org/10.5194/essd-14-4995-2022, https://doi.org/10.5194/essd-14-4995-2022, 2022
Short summary
Short summary
Environment and Climate Change Canada (ECCC) commissioned two supersites in Iqaluit (64°N, 69°W) and Whitehorse (61°N, 135°W) to provide new and enhanced automated and continuous altitude-resolved meteorological observations as part of the Canadian Arctic Weather Science (CAWS) project. These observations are being used to test new technologies, provide recommendations to the optimal Arctic observing system, and evaluate and improve the performance of numerical weather forecast systems.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Andrew Clifton, Sarah Barber, Alexander Stökl, Helmut Frank, and Timo Karlsson
Wind Energ. Sci., 7, 2231–2254, https://doi.org/10.5194/wes-7-2231-2022, https://doi.org/10.5194/wes-7-2231-2022, 2022
Short summary
Short summary
The transition to low-carbon sources of energy means that wind turbines will need to be built in hilly or mountainous regions or in places affected by icing. These locations are called
complexand are hard to develop. This paper sets out the research and development (R&D) needed to make it easier and cheaper to harness wind energy there. This includes collaborative R&D facilities, improved wind and weather models, frameworks for sharing data, and a clear definition of site complexity.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
EGUsphere, https://doi.org/10.5194/egusphere-2022-696, https://doi.org/10.5194/egusphere-2022-696, 2022
Preprint archived
Short summary
Short summary
Snow pack in high Arctic plays a key role in polar atmospheric chemistry, especially in spring when photochemistry becomes active. By sampling surface snow from a Canadian high Arctic location at Eureka, Nunavut (80° N, 86° W), we demonstrate that surface snow is a net sink rather than a source of atmospheric reactive bromine and nitrate. This finding is new and opposite to previous conclusions that snowpack is a large and direct source of reactive bromine in polar spring.
Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Ruzica Dadic, Philip Rostosky, Michael Gallagher, Robbie Mallett, Andrew Barrett, Stefan Hendricks, Rasmus Tonboe, Michelle McCrystall, Mark Serreze, Linda Thielke, Gunnar Spreen, Thomas Newman, John Yackel, Robert Ricker, Michel Tsamados, Amy Macfarlane, Henna-Reetta Hannula, and Martin Schneebeli
The Cryosphere, 16, 4223–4250, https://doi.org/10.5194/tc-16-4223-2022, https://doi.org/10.5194/tc-16-4223-2022, 2022
Short summary
Short summary
Impacts of rain on snow (ROS) on satellite-retrieved sea ice variables remain to be fully understood. This study evaluates the impacts of ROS over sea ice on active and passive microwave data collected during the 2019–20 MOSAiC expedition. Rainfall and subsequent refreezing of the snowpack significantly altered emitted and backscattered radar energy, laying important groundwork for understanding their impacts on operational satellite retrievals of various sea ice geophysical variables.
Alexander F. Vessey, Kevin I. Hodges, Len C. Shaffrey, and Jonathan J. Day
Weather Clim. Dynam., 3, 1097–1112, https://doi.org/10.5194/wcd-3-1097-2022, https://doi.org/10.5194/wcd-3-1097-2022, 2022
Short summary
Short summary
Understanding the location and intensity of hazardous weather across the Arctic is important for assessing risks to infrastructure, shipping, and coastal communities. This study describes the typical lifetime and structure of intense winter and summer Arctic cyclones. Results show the composite development and structure of intense summer Arctic cyclones are different from intense winter Arctic and North Atlantic Ocean extra-tropical cyclones and from conceptual models.
Chih-Chun Chou, Paul J. Kushner, Stéphane Laroche, Zen Mariani, Peter Rodriguez, Stella Melo, and Christopher G. Fletcher
Atmos. Meas. Tech., 15, 4443–4461, https://doi.org/10.5194/amt-15-4443-2022, https://doi.org/10.5194/amt-15-4443-2022, 2022
Short summary
Short summary
Aeolus is the first satellite that provides global wind profile measurements. The mission aims to improve the weather forecasts in the tropics, but also, potentially, in the polar regions. We evaluate the performance of the instrument over the Canadian North and the Arctic by comparing its measured winds in both cloudy and non-cloudy layers to wind data from forecasts, reanalysis, and ground-based instruments. Overall, good agreement was seen, but Aeolus winds have greater dispersion.
Jonathan J. Day, Sarah Keeley, Gabriele Arduini, Linus Magnusson, Kristian Mogensen, Mark Rodwell, Irina Sandu, and Steffen Tietsche
Weather Clim. Dynam., 3, 713–731, https://doi.org/10.5194/wcd-3-713-2022, https://doi.org/10.5194/wcd-3-713-2022, 2022
Short summary
Short summary
A recent drive to develop seamless forecasting systems has culminated in the development of weather forecasting systems that include a coupled representation of the atmosphere, ocean and sea ice. Before this, sea ice and sea surface temperature anomalies were typically fixed throughout a given forecast. We show that the dynamic coupling is most beneficial during periods of rapid ice advance, where persistence is a poor forecast of the sea ice and leads to large errors in the uncoupled system.
Assia Arouf, Hélène Chepfer, Thibault Vaillant de Guélis, Marjolaine Chiriaco, Matthew D. Shupe, Rodrigo Guzman, Artem Feofilov, Patrick Raberanto, Tristan S. L'Ecuyer, Seiji Kato, and Michael R. Gallagher
Atmos. Meas. Tech., 15, 3893–3923, https://doi.org/10.5194/amt-15-3893-2022, https://doi.org/10.5194/amt-15-3893-2022, 2022
Short summary
Short summary
We proposed new estimates of the surface longwave (LW) cloud radiative effect (CRE) derived from observations collected by a space-based lidar on board the CALIPSO satellite and radiative transfer computations. Our estimate appropriately captures the surface LW CRE annual variability over bright polar surfaces, and it provides a dataset more than 13 years long.
David N. Wagner, Matthew D. Shupe, Christopher Cox, Ola G. Persson, Taneil Uttal, Markus M. Frey, Amélie Kirchgaessner, Martin Schneebeli, Matthias Jaggi, Amy R. Macfarlane, Polona Itkin, Stefanie Arndt, Stefan Hendricks, Daniela Krampe, Marcel Nicolaus, Robert Ricker, Julia Regnery, Nikolai Kolabutin, Egor Shimanshuck, Marc Oggier, Ian Raphael, Julienne Stroeve, and Michael Lehning
The Cryosphere, 16, 2373–2402, https://doi.org/10.5194/tc-16-2373-2022, https://doi.org/10.5194/tc-16-2373-2022, 2022
Short summary
Short summary
Based on measurements of the snow cover over sea ice and atmospheric measurements, we estimate snowfall and snow accumulation for the MOSAiC ice floe, between November 2019 and May 2020. For this period, we estimate 98–114 mm of precipitation. We suggest that about 34 mm of snow water equivalent accumulated until the end of April 2020 and that at least about 50 % of the precipitated snow was eroded or sublimated. Further, we suggest explanations for potential snowfall overestimation.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Sasu Karttunen, Ewan O'Connor, Olli Peltola, and Leena Järvi
Atmos. Meas. Tech., 15, 2417–2432, https://doi.org/10.5194/amt-15-2417-2022, https://doi.org/10.5194/amt-15-2417-2022, 2022
Short summary
Short summary
To study the complex structure of the lowest tens of metres of atmosphere in urban areas, measurement methods with great spatial and temporal coverage are needed. In our study, we analyse measurements with a promising and relatively new method, distributed temperature sensing, capable of providing detailed information on the near-surface atmosphere. We present multiple ways to utilise these kinds of measurements, as well as important considerations for planning new studies using the method.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Michael R. Gallagher, Matthew D. Shupe, Hélène Chepfer, and Tristan L'Ecuyer
The Cryosphere, 16, 435–450, https://doi.org/10.5194/tc-16-435-2022, https://doi.org/10.5194/tc-16-435-2022, 2022
Short summary
Short summary
By using direct observations of snowfall and mass changes, the variability of daily snowfall mass input to the Greenland ice sheet is quantified for the first time. With new methods we conclude that cyclones west of Greenland in summer contribute the most snowfall, with 1.66 Gt per occurrence. These cyclones are contextualized in the broader Greenland climate, and snowfall is validated against mass changes to verify the results. Snowfall and mass change observations are shown to agree well.
Jutta Kesti, John Backman, Ewan J. O'Connor, Anne Hirsikko, Eija Asmi, Minna Aurela, Ulla Makkonen, Maria Filioglou, Mika Komppula, Hannele Korhonen, and Heikki Lihavainen
Atmos. Chem. Phys., 22, 481–503, https://doi.org/10.5194/acp-22-481-2022, https://doi.org/10.5194/acp-22-481-2022, 2022
Short summary
Short summary
In this study we combined aerosol particle measurements at the surface with a scanning Doppler lidar providing vertical profiles of the atmosphere to study the effect of different boundary layer conditions on aerosol particle properties in the understudied Arabian Peninsula region. The instrumentation used in this study enabled us to identify periods when pollution from remote sources was mixed down to the surface and initiated new particle formation in the growing boundary layer.
Sonja Murto, Rodrigo Caballero, Gunilla Svensson, and Lukas Papritz
Weather Clim. Dynam., 3, 21–44, https://doi.org/10.5194/wcd-3-21-2022, https://doi.org/10.5194/wcd-3-21-2022, 2022
Short summary
Short summary
This study uses reanalysis data to investigate the role of atmospheric blocking, prevailing high-pressure systems and mid-latitude cyclones in driving high-Arctic wintertime warm extreme events. These events are mainly preceded by Ural and Scandinavian blocks, which are shown to be significantly influenced and amplified by cyclones in the North Atlantic. It also highlights processes that need to be well captured in climate models for improving their representation of Arctic wintertime climate.
Anna Franck, Dmitri Moisseev, Ville Vakkari, Matti Leskinen, Janne Lampilahti, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Meas. Tech., 14, 7341–7353, https://doi.org/10.5194/amt-14-7341-2021, https://doi.org/10.5194/amt-14-7341-2021, 2021
Short summary
Short summary
We proposed a method to derive a convective boundary layer height, using insects in radar observations, and we investigated the consistency of these retrievals among different radar frequencies (5, 35 and 94 GHz). This method can be applied to radars at other measurement stations and serve as additional way to estimate the boundary layer height during summer. The entrainment zone was also observed by the 5 GHz radar above the boundary layer in the form of a Bragg scatter layer.
Shan Sun and Amy Solomon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-353, https://doi.org/10.5194/tc-2021-353, 2021
Preprint withdrawn
Short summary
Short summary
We validate the standalone CICE sea ice model for application in the seasonal forecast, before it is used in the coupled atmosphere-ocean-ice model. We found the model did a better job in forecasting Arctic sea ice extent in the warm season than in the cold season at the seasonal time scale. A higher forecast skill is achieved when the model is initialized with ice thickness from satellite observations, indicating the importance of the ice thickness initialization.
Xiaoxia Shang, Tero Mielonen, Antti Lipponen, Elina Giannakaki, Ari Leskinen, Virginie Buchard, Anton S. Darmenov, Antti Kukkurainen, Antti Arola, Ewan O'Connor, Anne Hirsikko, and Mika Komppula
Atmos. Meas. Tech., 14, 6159–6179, https://doi.org/10.5194/amt-14-6159-2021, https://doi.org/10.5194/amt-14-6159-2021, 2021
Short summary
Short summary
The long-range-transported smoke particles from a Canadian wildfire event were observed with a multi-wavelength Raman polarization lidar and a ceilometer over Kuopio, Finland, in June 2019. The optical properties and the mass concentration estimations were reported for such aged smoke aerosols over northern Europe.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Chiara Marsigli, Elizabeth Ebert, Raghavendra Ashrit, Barbara Casati, Jing Chen, Caio A. S. Coelho, Manfred Dorninger, Eric Gilleland, Thomas Haiden, Stephanie Landman, and Marion Mittermaier
Nat. Hazards Earth Syst. Sci., 21, 1297–1312, https://doi.org/10.5194/nhess-21-1297-2021, https://doi.org/10.5194/nhess-21-1297-2021, 2021
Short summary
Short summary
This paper reviews new observations for the verification of high-impact weather and provides advice for their usage in objective verification. New observations include remote sensing datasets, products developed for nowcasting, datasets derived from telecommunication systems, data collected from citizens, reports of impacts and reports from insurance companies. This work has been performed in the framework of the Joint Working Group on Forecast Verification Research (JWGFVR) of the WMO.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Steven Compernolle, Athina Argyrouli, Ronny Lutz, Maarten Sneep, Jean-Christopher Lambert, Ann Mari Fjæraa, Daan Hubert, Arno Keppens, Diego Loyola, Ewan O'Connor, Fabian Romahn, Piet Stammes, Tijl Verhoelst, and Ping Wang
Atmos. Meas. Tech., 14, 2451–2476, https://doi.org/10.5194/amt-14-2451-2021, https://doi.org/10.5194/amt-14-2451-2021, 2021
Short summary
Short summary
The high-resolution satellite Sentinel-5p TROPOMI observes several atmospheric gases. To account for cloud interference with the observations, S5P cloud data products (CLOUD OCRA/ROCINN_CAL, OCRA/ROCINN_CRB, and FRESCO) provide vital input: cloud fraction, cloud height, and cloud optical thickness. Here, S5P cloud parameters are validated by comparing with other satellite sensors (VIIRS, MODIS, and OMI) and with ground-based CloudNet data. The agreement depends on product type and cloud height.
Olli Peltola, Karl Lapo, Ilkka Martinkauppi, Ewan O'Connor, Christoph K. Thomas, and Timo Vesala
Atmos. Meas. Tech., 14, 2409–2427, https://doi.org/10.5194/amt-14-2409-2021, https://doi.org/10.5194/amt-14-2409-2021, 2021
Short summary
Short summary
We evaluated the suitability of fiber-optic distributed temperature sensing (DTS) for observing spatial (>25 cm) and temporal (>1 s) details of airflow within and above forests. The DTS measurements could discern up to third-order moments of the flow and observe spatial details of coherent flow motions. Similar measurements are not possible with more conventional measurement techniques. Hence, the DTS measurements will provide key insights into flows close to roughness elements, e.g. trees.
Julie M. Thériault, Stephen J. Déry, John W. Pomeroy, Hilary M. Smith, Juris Almonte, André Bertoncini, Robert W. Crawford, Aurélie Desroches-Lapointe, Mathieu Lachapelle, Zen Mariani, Selina Mitchell, Jeremy E. Morris, Charlie Hébert-Pinard, Peter Rodriguez, and Hadleigh D. Thompson
Earth Syst. Sci. Data, 13, 1233–1249, https://doi.org/10.5194/essd-13-1233-2021, https://doi.org/10.5194/essd-13-1233-2021, 2021
Short summary
Short summary
This article discusses the data that were collected during the Storms and Precipitation Across the continental Divide (SPADE) field campaign in spring 2019 in the Canadian Rockies, along the Alberta and British Columbia border. Various instruments were installed at five field sites to gather information about atmospheric conditions focussing on precipitation. Details about the field sites, the instrumentation used, the variables collected, and the collection methods and intervals are presented.
Terhikki Manninen, Kati Anttila, Emmihenna Jääskeläinen, Aku Riihelä, Jouni Peltoniemi, Petri Räisänen, Panu Lahtinen, Niilo Siljamo, Laura Thölix, Outi Meinander, Anna Kontu, Hanne Suokanerva, Roberta Pirazzini, Juha Suomalainen, Teemu Hakala, Sanna Kaasalainen, Harri Kaartinen, Antero Kukko, Olivier Hautecoeur, and Jean-Louis Roujean
The Cryosphere, 15, 793–820, https://doi.org/10.5194/tc-15-793-2021, https://doi.org/10.5194/tc-15-793-2021, 2021
Short summary
Short summary
The primary goal of this paper is to present a model of snow surface albedo (brightness) accounting for small-scale surface roughness effects. It can be combined with any volume scattering model. The results indicate that surface roughness may decrease the albedo by about 1–3 % in midwinter and even more than 10 % during the late melting season. The effect is largest for low solar zenith angle values and lower bulk snow albedo values.
Christopher J. Cox, Sara M. Morris, Taneil Uttal, Ross Burgener, Emiel Hall, Mark Kutchenreiter, Allison McComiskey, Charles N. Long, Bryan D. Thomas, and James Wendell
Atmos. Meas. Tech., 14, 1205–1224, https://doi.org/10.5194/amt-14-1205-2021, https://doi.org/10.5194/amt-14-1205-2021, 2021
Short summary
Short summary
Solar and infrared radiation are measured regularly for research, industry, and climate monitoring. In cold climates, icing of sensors is a poorly constrained source of uncertainty. D-ICE was carried out in Alaska to document the effectiveness of ice-mitigation technology and quantify errors associated with ice. Technology was more effective than anticipated, and while instantaneous errors were large, mean biases were small. Attributes of effective ice mitigation design were identified.
Jessie M. Creamean, Gijs de Boer, Hagen Telg, Fan Mei, Darielle Dexheimer, Matthew D. Shupe, Amy Solomon, and Allison McComiskey
Atmos. Chem. Phys., 21, 1737–1757, https://doi.org/10.5194/acp-21-1737-2021, https://doi.org/10.5194/acp-21-1737-2021, 2021
Short summary
Short summary
Arctic clouds play a role in modulating sea ice extent. Importantly, aerosols facilitate cloud formation, and thus it is crucial to understand the interactions between aerosols and clouds. Vertical measurements of aerosols and clouds are needed to tackle this issue. We present results from balloon-borne measurements of aerosols and clouds over the course of 2 years in northern Alaska. These data shed light onto the vertical distributions of aerosols relative to clouds spanning multiple seasons.
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 21, 577–595, https://doi.org/10.5194/acp-21-577-2021, https://doi.org/10.5194/acp-21-577-2021, 2021
Short summary
Short summary
We investigate the vertical distribution of aerosol in the climate model NorESM1-M in five regions of marine stratocumulus clouds. We thereby analyze the total aerosol extinction to facilitate a comparison with satellite data. We find that the model underestimates aerosol extinction throughout the troposphere, especially elevated aerosol layers. Further, we perform sensitivity experiments to identify the processes most important for vertical aerosol distribution in our model.
Xin Yang, Anne-M. Blechschmidt, Kristof Bognar, Audra McClure-Begley, Sara Morris, Irina Petropavlovskikh, Andreas Richter, Henrik Skov, Kimberly Strong, David W. Tarasick, Taneil Uttal, Mika Vestenius, and Xiaoyi Zhao
Atmos. Chem. Phys., 20, 15937–15967, https://doi.org/10.5194/acp-20-15937-2020, https://doi.org/10.5194/acp-20-15937-2020, 2020
Short summary
Short summary
This is a modelling-based study on Arctic surface ozone, with a particular focus on spring ozone depletion events (i.e. with concentrations < 10 ppbv). Model experiments show that model runs with blowing-snow-sourced sea salt aerosols implemented as a source of reactive bromine can reproduce well large-scale ozone depletion events observed in the Arctic. This study supplies modelling evidence of the proposed mechanism of reactive-bromine release from blowing snow on sea ice (Yang et al., 2008).
Peggy Achtert, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström
Atmos. Chem. Phys., 20, 14983–15002, https://doi.org/10.5194/acp-20-14983-2020, https://doi.org/10.5194/acp-20-14983-2020, 2020
Short summary
Short summary
We present observations of precipitating and non-precipitating Arctic liquid and mixed-phase clouds during a research cruise along the Russian shelf in summer and autumn of 2014. Active remote-sensing observations, radiosondes, and auxiliary measurements are combined in the synergistic Cloudnet retrieval. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. About 8 % of all liquid clouds show a liquid water path below the infrared black body limit.
Maria Filioglou, Elina Giannakaki, John Backman, Jutta Kesti, Anne Hirsikko, Ronny Engelmann, Ewan O'Connor, Jari T. T. Leskinen, Xiaoxia Shang, Hannele Korhonen, Heikki Lihavainen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020, https://doi.org/10.5194/acp-20-8909-2020, 2020
Short summary
Short summary
Dust optical properties are region-dependent. Saharan, Asian, and Arabian dusts do not pose similar optical properties in terms of lidar ratios; thus, a universal lidar ratio for dust particles will lead to biases. The present study analyses observations over the United Arab Emirates, quantifying the optical and geometrical extents of the aerosol layers in the area, providing at the same time the Arabian dust properties along with chemical analysis of dust samples collected in the region.
Pyry Pentikäinen, Ewan James O'Connor, Antti Juhani Manninen, and Pablo Ortiz-Amezcua
Atmos. Meas. Tech., 13, 2849–2863, https://doi.org/10.5194/amt-13-2849-2020, https://doi.org/10.5194/amt-13-2849-2020, 2020
Short summary
Short summary
We provide a methodology for obtaining a function describing how the Doppler lidar telescope configuration
impacts the measurements. Together with the function itself, we also provide the uncertainties in the function, which propagate through to provide uncertainties in the geophysical quantities obtained from the measurements. The method can be used to determine how stable the instrument is over time and also identify if changes have been made in the instrument setup.
Ghislain Picard, Marie Dumont, Maxim Lamare, François Tuzet, Fanny Larue, Roberta Pirazzini, and Laurent Arnaud
The Cryosphere, 14, 1497–1517, https://doi.org/10.5194/tc-14-1497-2020, https://doi.org/10.5194/tc-14-1497-2020, 2020
Short summary
Short summary
Surface albedo is an essential variable of snow-covered areas. The measurement of this variable over a tilted terrain with levelled sensors is affected by artefacts that need to be corrected. Here we develop a theory of spectral albedo measurement over slopes from which we derive four correction algorithms. The comparison to in situ measurements taken in the Alps shows the adequacy of the theory, and the application of the algorithms shows systematic improvements.
Angela Cheng, Barbara Casati, Adrienne Tivy, Tom Zagon, Jean-François Lemieux, and L. Bruno Tremblay
The Cryosphere, 14, 1289–1310, https://doi.org/10.5194/tc-14-1289-2020, https://doi.org/10.5194/tc-14-1289-2020, 2020
Short summary
Short summary
Sea ice charts by the Canadian Ice Service (CIS) contain visually estimated ice concentration produced by analysts. The accuracy of manually derived ice concentrations is not well understood. The subsequent uncertainty of ice charts results in downstream uncertainties for ice charts users, such as models and climatology studies, and when used as a verification source for automated sea ice classifiers. This study quantifies the level of accuracy and inter-analyst agreement for ice charts by CIS.
Philippe Ricaud, Massimo Del Guasta, Eric Bazile, Niramson Azouz, Angelo Lupi, Pierre Durand, Jean-Luc Attié, Dana Veron, Vincent Guidard, and Paolo Grigioni
Atmos. Chem. Phys., 20, 4167–4191, https://doi.org/10.5194/acp-20-4167-2020, https://doi.org/10.5194/acp-20-4167-2020, 2020
Short summary
Short summary
Thin (~ 100 m) supercooled liquid water (SLW, water staying in liquid phase below 0 °C) clouds have been detected, analysed, and modelled over the Dome C (Concordia, Antarctica) station during the austral summer 2018–2019 using observations and meteorological analyses. The SLW clouds were observed at the top of the planetary boundary layer and the SLW content was always strongly underestimated by the model indicating an incorrect simulation of the surface energy budget of the Antarctic Plateau.
Gijs de Boer, Darielle Dexheimer, Fan Mei, John Hubbe, Casey Longbottom, Peter J. Carroll, Monty Apple, Lexie Goldberger, David Oaks, Justin Lapierre, Michael Crume, Nathan Bernard, Matthew D. Shupe, Amy Solomon, Janet Intrieri, Dale Lawrence, Abhiram Doddi, Donna J. Holdridge, Michael Hubbell, Mark D. Ivey, and Beat Schmid
Earth Syst. Sci. Data, 11, 1349–1362, https://doi.org/10.5194/essd-11-1349-2019, https://doi.org/10.5194/essd-11-1349-2019, 2019
Short summary
Short summary
This paper provides a summary of observations collected at Oliktok Point, Alaska, as part of the Profiling at Oliktok Point to Enhance YOPP Experiments (POPEYE) campaign. The Year of Polar Prediction (YOPP) is a multi-year concentrated effort to improve forecasting capabilities at high latitudes across a variety of timescales. POPEYE observations include atmospheric data collected using unmanned aircraft, tethered balloons, and radiosondes, made in parallel with routine measurements at the site.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, Christoph Ritter, and Ewan O'Connor
Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, https://doi.org/10.5194/acp-19-4105-2019, 2019
Short summary
Short summary
In this study, properties of clouds at the French–German Arctic research station in Ny-Ålesund are related to in-cloud thermodynamic conditions. The dataset used was collected within the Arctic Amplification project with a set of active and passive remote instruments. The results are compared with a model output. Significant divergence in observations and modelling of single-layer ice and mixed-phase clouds was found.
Minttu Tuononen, Ewan J. O'Connor, and Victoria A. Sinclair
Atmos. Chem. Phys., 19, 1985–2000, https://doi.org/10.5194/acp-19-1985-2019, https://doi.org/10.5194/acp-19-1985-2019, 2019
Short summary
Short summary
Many applications require accurate forecasts of the amount of solar radiation reaching the surface, such as solar energy and UV radiation forecasts. This also means that cloud must be correctly forecast. We investigated the skill of these forecasts over Helsinki, Finland, using cloud and solar radiation observations. We found that there were errors in the model radiation forecast even when the clouds were correctly forecast, which we attribute to incorrect representation of the cloud properties.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Ville Vakkari, Antti J. Manninen, Ewan J. O'Connor, Jan H. Schween, Pieter G. van Zyl, and Eleni Marinou
Atmos. Meas. Tech., 12, 839–852, https://doi.org/10.5194/amt-12-839-2019, https://doi.org/10.5194/amt-12-839-2019, 2019
Short summary
Short summary
Commercially available Doppler lidars have been proven to be efficient tools for studying winds and turbulence in the planetary boundary layer. However, in many cases low signal is still a limiting factor for utilising measurements by these devices. Here, we present a novel post-processing algorithm for Halo Stream Line Doppler lidars, which enables an improvement in sensitivity of a factor of 5 or more.
Xiang-Yu Li, Gunilla Svensson, Axel Brandenburg, and Nils E. L. Haugen
Atmos. Chem. Phys., 19, 639–648, https://doi.org/10.5194/acp-19-639-2019, https://doi.org/10.5194/acp-19-639-2019, 2019
Short summary
Short summary
The broadening of droplet size distributions in stratiform clouds, where the updraft velocity is almost zero, is puzzling. Without turbulence, the classical treatment of condensational growth of cloud droplets fails to explain this
broadening. We investigated the time evolution of droplet size distributions using direct numerical simulations, where turbulence is resolved into the smallest scales. We found that the broadening is due to the turbulence-facilitated supersaturation fluctuations.
Amy Solomon, Gijs de Boer, Jessie M. Creamean, Allison McComiskey, Matthew D. Shupe, Maximilian Maahn, and Christopher Cox
Atmos. Chem. Phys., 18, 17047–17059, https://doi.org/10.5194/acp-18-17047-2018, https://doi.org/10.5194/acp-18-17047-2018, 2018
Short summary
Short summary
The results of this study indicate that perturbations in ice nucleating particles (INPs) dominate over cloud condensation nuclei (CCN) perturbations in Arctic mixed-phase stratocumulus; i.e., an equivalent fractional decrease in CCN and INPs results in an increase in the cloud-top longwave cooling rate, even though the droplet effective radius increases and the cloud emissivity decreases. In addition, cloud-processing causes layering of aerosols with increased concentrations of CCN at cloud top.
Kerstin Hartung, Gunilla Svensson, Hamish Struthers, Anna-Lena Deppenmeier, and Wilco Hazeleger
Geosci. Model Dev., 11, 4117–4137, https://doi.org/10.5194/gmd-11-4117-2018, https://doi.org/10.5194/gmd-11-4117-2018, 2018
Short summary
Short summary
Single-column models have been used to develop weather and climate models for several decades. They decouple small-scale processes from large-scale forcing and allow us to test models in a controlled environment with reduced computational cost. Here, we present a fully coupled atmosphere–ocean single-column model, including sea ice. We demonstrate that it is a valuable tool to advance our understanding in marine and polar boundary layer processes and interactions of their coupled components.
Lauren Schmeisser, John Backman, John A. Ogren, Elisabeth Andrews, Eija Asmi, Sandra Starkweather, Taneil Uttal, Markus Fiebig, Sangeeta Sharma, Kostas Eleftheriadis, Stergios Vratolis, Michael Bergin, Peter Tunved, and Anne Jefferson
Atmos. Chem. Phys., 18, 11599–11622, https://doi.org/10.5194/acp-18-11599-2018, https://doi.org/10.5194/acp-18-11599-2018, 2018
Short summary
Short summary
This paper presents pan-Arctic seasonality of in-situ-measured aerosol optical properties from six surface monitoring sites. The analysis provides insight into aerosol annual variability throughout the region – something that is not possible using only measurements from satellite or temporary aircraft campaigns. This paper shows that the large spatiotemporal variability in aerosol optical properties needs to be taken into account in order to properly represent Arctic climate.
Anna Nikandrova, Ksenia Tabakova, Antti Manninen, Riikka Väänänen, Tuukka Petäjä, Markku Kulmala, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Chem. Phys., 18, 10575–10591, https://doi.org/10.5194/acp-18-10575-2018, https://doi.org/10.5194/acp-18-10575-2018, 2018
Short summary
Short summary
We investigated temporal and vertical aerosol properties in a rural environment during BAECC (Biogenic Aerosols – Effects on Cloud and Climate) campaign. Differences were observed in aerosol number size distribution, variability and mixing in the layers between two case studies: clear-sky and partly cloudy case. We also conclude that care should be taken in selecting appropriate arrival heights of backward trajectories, since the modelled and observed layer heights did not always coincide.
Emma L. Mungall, Jonathan P. D. Abbatt, Jeremy J. B. Wentzell, Gregory R. Wentworth, Jennifer G. Murphy, Daniel Kunkel, Ellen Gute, David W. Tarasick, Sangeeta Sharma, Christopher J. Cox, Taneil Uttal, and John Liggio
Atmos. Chem. Phys., 18, 10237–10254, https://doi.org/10.5194/acp-18-10237-2018, https://doi.org/10.5194/acp-18-10237-2018, 2018
Short summary
Short summary
We measured gas-phase formic and acetic acid at Alert, Nunavut. These acids play an important role in cloud water acidity in remote environments, yet they are not well represented in chemical transport models, particularly in the Arctic. We observed high levels of formic and acetic acid under both cold, wet, and cloudy and warm, sunny, and dry conditions, suggesting that multiple sources significantly contribute to gas-phase concentrations of these species in the summer Arctic.
Leslie M. Hartten, Christopher J. Cox, Paul E. Johnston, Daniel E. Wolfe, Scott Abbott, and H. Alex McColl
Earth Syst. Sci. Data, 10, 1139–1164, https://doi.org/10.5194/essd-10-1139-2018, https://doi.org/10.5194/essd-10-1139-2018, 2018
Short summary
Short summary
In early 2016 the NOAA's El Niño Rapid Response Field Campaign documented the ongoing strong event and its impacts. Observations from the warmed Pacific included 10 weeks of surface meteorology from Kiritimati Island and 4 weeks of surface meteorology and air–sea fluxes from NOAA Ship Ronald H. Brown. We have vetted the data, identifying issues and minimizing their impacts when possible. Measurements include a meter of rain at Kiritimati, and continuous ocean and air conditions from the ship.
Leslie M. Hartten, Christopher J. Cox, Paul E. Johnston, Daniel E. Wolfe, Scott Abbott, H. Alex McColl, Xiao-Wei Quan, and Matthew G. Winterkorn
Earth Syst. Sci. Data, 10, 1165–1183, https://doi.org/10.5194/essd-10-1165-2018, https://doi.org/10.5194/essd-10-1165-2018, 2018
Short summary
Short summary
Radiosonde data collected during NOAA's El Niño Rapid Response Field Campaign in early 2016 have been reprocessed and lightly quality controlled. Temperature, humidity, and wind soundings from Kiritimati and NOAA Ship Ronald H. Brown capture the repeated advance and retreat of the ITCZ at Kiritimati, a variety of marine tropospheric environments encountered by the ship, and lower-stratospheric features of the 2015 2016 QBO (quasi-biennial oscillation).
Piet Termonia, Claude Fischer, Eric Bazile, François Bouyssel, Radmila Brožková, Pierre Bénard, Bogdan Bochenek, Daan Degrauwe, Mariá Derková, Ryad El Khatib, Rafiq Hamdi, Ján Mašek, Patricia Pottier, Neva Pristov, Yann Seity, Petra Smolíková, Oldřich Španiel, Martina Tudor, Yong Wang, Christoph Wittmann, and Alain Joly
Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, https://doi.org/10.5194/gmd-11-257-2018, 2018
Short summary
Short summary
This paper describes the ALADIN System that has been developed by the international ALADIN consortium of 16 European and northern African partners since its creation in 1990. The paper also describes how its model configurations are used by the consortium partners for their operational weather forecasting applications and for weather and climate research.
John Backman, Lauren Schmeisser, Aki Virkkula, John A. Ogren, Eija Asmi, Sandra Starkweather, Sangeeta Sharma, Konstantinos Eleftheriadis, Taneil Uttal, Anne Jefferson, Michael Bergin, Alexander Makshtas, Peter Tunved, and Markus Fiebig
Atmos. Meas. Tech., 10, 5039–5062, https://doi.org/10.5194/amt-10-5039-2017, https://doi.org/10.5194/amt-10-5039-2017, 2017
Short summary
Short summary
Light absorption by aerosol particles is of climatic importance. A widely used means to measure aerosol light absorption is a filter-based measurement technique. In remote areas, such as the Arctic, filter-based instruments operate close to their detection limit. The study presents how a lower detection limit can be achieved for one such instrument, the Aethalometer. Additionally, the Aethalometer is compared to similar instruments, thus improving measurement inter-comparability in the Arctic.
Paul J. Valdes, Edward Armstrong, Marcus P. S. Badger, Catherine D. Bradshaw, Fran Bragg, Michel Crucifix, Taraka Davies-Barnard, Jonathan J. Day, Alex Farnsworth, Chris Gordon, Peter O. Hopcroft, Alan T. Kennedy, Natalie S. Lord, Dan J. Lunt, Alice Marzocchi, Louise M. Parry, Vicky Pope, William H. G. Roberts, Emma J. Stone, Gregory J. L. Tourte, and Jonny H. T. Williams
Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, https://doi.org/10.5194/gmd-10-3715-2017, 2017
Short summary
Short summary
In this paper we describe the family of climate models used by the BRIDGE research group at the University of Bristol as well as by various other institutions. These models are based on the UK Met Office HadCM3 models and here we describe the various modifications which have been made as well as the key features of a number of configurations in use.
Dan Weaver, Kimberly Strong, Matthias Schneider, Penny M. Rowe, Chris Sioris, Kaley A. Walker, Zen Mariani, Taneil Uttal, C. Thomas McElroy, Holger Vömel, Alessio Spassiani, and James R. Drummond
Atmos. Meas. Tech., 10, 2851–2880, https://doi.org/10.5194/amt-10-2851-2017, https://doi.org/10.5194/amt-10-2851-2017, 2017
Short summary
Short summary
We have compared techniques used by several PEARL instruments to measure atmospheric water vapour. No single instrument can comprehensively map the atmosphere. We documented how well these techniques perform and quantified the agreement and biases between them. This work showed that new FTIR datasets at PEARL capture accurate measurements of High Arctic water vapour.
Lena Frey, Frida A.-M. Bender, and Gunilla Svensson
Atmos. Chem. Phys., 17, 9145–9162, https://doi.org/10.5194/acp-17-9145-2017, https://doi.org/10.5194/acp-17-9145-2017, 2017
Short summary
Short summary
In this study, the cloud albedo effect in climate models is investigated, separating the influence of anthropogenic sulfate and non-sulfate aerosols. Cloud albedo changes induced by added anthropogenic aerosols are found to be determined by changes in the cloud water content rather than model sensitivity to monthly aerosol variations. The results also indicate that the background aerosol is the main driver for a cloud brightening effect on the month-to-month scale.
Philippe Ricaud, Eric Bazile, Massimo del Guasta, Christian Lanconelli, Paolo Grigioni, and Achraf Mahjoub
Atmos. Chem. Phys., 17, 5221–5237, https://doi.org/10.5194/acp-17-5221-2017, https://doi.org/10.5194/acp-17-5221-2017, 2017
Short summary
Short summary
The novelty of the paper is to combine a large set of measurements and meteorological models to study the genesis of thick cloud and diamond dust/ice fog (ice crystals) episodes above Dome C, Antarctica. The originality of the work is to attribute the presence of thick cloud and diamond dust/ice fog to advection and microphysical processes with oceanic and continental origin of air masses, respectively. Thick cloud episodes are reproduced by the models but not diamond dust/ice fog episode.
Tom Edinburgh and Jonathan J. Day
The Cryosphere, 10, 2721–2730, https://doi.org/10.5194/tc-10-2721-2016, https://doi.org/10.5194/tc-10-2721-2016, 2016
Short summary
Short summary
Contrary to expectations, Antarctic sea ice cover has been increasing in area during the last three decades. In order to put these trends into a wider context this paper analyses direct observations of sea ice, recorded in ships' logbooks during the Heroic Age of Antarctic Exploration (1887–1917) for the first time. It shows that the sea ice was significantly further north in the Weddell Sea during the period but comparable to the present day in other sectors.
Simone Kotthaus, Ewan O'Connor, Christoph Münkel, Cristina Charlton-Perez, Martial Haeffelin, Andrew M. Gabey, and C. Sue B. Grimmond
Atmos. Meas. Tech., 9, 3769–3791, https://doi.org/10.5194/amt-9-3769-2016, https://doi.org/10.5194/amt-9-3769-2016, 2016
Short summary
Short summary
Ceilometers lidars are useful to study clouds, aerosol layers and atmospheric boundary layer structures. As sensor optics and acquisition algorithms can strongly influence the observations, sensor specifics need to be incorporated into the physical interpretation. Here, recommendations are made for the operation and processing of profile observations from the widely deployed Vaisala CL31 ceilometer. Proposed corrections are shown to increase data quality and even data availability at times.
Fleur Couvreux, Eric Bazile, Guylaine Canut, Yann Seity, Marie Lothon, Fabienne Lohou, Françoise Guichard, and Erik Nilsson
Atmos. Chem. Phys., 16, 8983–9002, https://doi.org/10.5194/acp-16-8983-2016, https://doi.org/10.5194/acp-16-8983-2016, 2016
Short summary
Short summary
This study evaluates the ability of operational models to predict the boundary-layer turbulent processes and mesoscale variability observed during the Boundary Layer Late-Afternoon and Sunset Turbulence field campaign. The models succeed in reproducing the variability from one day to another in terms of cloud cover, temperature and boundary-layer depth. However, they exhibit some systematic biases. The high-resolution model reproduces the vertical structures better.
Moa K. Sporre, Ewan J. O'Connor, Nina Håkansson, Anke Thoss, Erik Swietlicki, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 3193–3203, https://doi.org/10.5194/amt-9-3193-2016, https://doi.org/10.5194/amt-9-3193-2016, 2016
Short summary
Short summary
Satellite measurements of cloud top height and liquid water path are compared to ground-based remote sensing to evaluate the satellite retrievals. The overall performance of the satellite retrievals of cloud top height are good, but they become more problematic when several layers of clouds are present. The liquid water path retrievals also agree well, and the average differences are within the estimated measurement uncertainties.
Riikka Väänänen, Radovan Krejci, Hanna E. Manninen, Antti Manninen, Janne Lampilahti, Stephany Buenrostro Mazon, Tuomo Nieminen, Taina Yli-Juuti, Jenni Kontkanen, Ari Asmi, Pasi P. Aalto, Petri Keronen, Toivo Pohja, Ewan O'Connor, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-556, https://doi.org/10.5194/acp-2016-556, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A light aircraft was used as a platform to explore the horizontal and vertical variability of the aerosol particles over a boreal forest in Central Finland. This information is needed when data measured at ground level station is extrapolated and parameterized to represent the
conditions of the larger scale. The measurements showed that despite local fluctuations there was a good agreement between the on-ground and airborne measurements inside the planetary boundary layer.
Jonathan J. Day, Steffen Tietsche, Mat Collins, Helge F. Goessling, Virginie Guemas, Anabelle Guillory, William J. Hurlin, Masayoshi Ishii, Sarah P. E. Keeley, Daniela Matei, Rym Msadek, Michael Sigmond, Hiroaki Tatebe, and Ed Hawkins
Geosci. Model Dev., 9, 2255–2270, https://doi.org/10.5194/gmd-9-2255-2016, https://doi.org/10.5194/gmd-9-2255-2016, 2016
Short summary
Short summary
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable.
N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Nøjgaard, and H. Skov
Atmos. Chem. Phys., 16, 7587–7604, https://doi.org/10.5194/acp-16-7587-2016, https://doi.org/10.5194/acp-16-7587-2016, 2016
Short summary
Short summary
In this study, we focused on how vegetation fires that occurred in northern Eurasia during the period 2002–2013 influenced the budget of BC in the Arctic. An average area of 250 000 km2 yr−1 was burned in northern Eurasia and the global emissions of BC ranged between 8.0 and 9.5 Tg yr−1, while 102 ± 29 kt yr−1 BC from biomass burning was deposited on the Arctic. About 46 % of the Arctic BC from vegetation fires originated from Siberia, 6 % from Kazakhstan, 5 % from Europe, and about 1 % from Mon
Antti J. Manninen, Ewan J. O'Connor, Ville Vakkari, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 817–827, https://doi.org/10.5194/amt-9-817-2016, https://doi.org/10.5194/amt-9-817-2016, 2016
Short summary
Short summary
Current commercially available Doppler lidars provide a cost-effective solution for measuring vertical and horizontal wind velocities, and the co- and cross-polarised backscatter profiles. However, the background noise behaviour becomes a limiting factor for the instrument sensitivity in low aerosol load regions. In this paper we present a correction method which can improve the data availability up to 50 % and greatly improves the calculation of turbulent properties in weak signal regimes.
E. Asmi, V. Kondratyev, D. Brus, T. Laurila, H. Lihavainen, J. Backman, V. Vakkari, M. Aurela, J. Hatakka, Y. Viisanen, T. Uttal, V. Ivakhov, and A. Makshtas
Atmos. Chem. Phys., 16, 1271–1287, https://doi.org/10.5194/acp-16-1271-2016, https://doi.org/10.5194/acp-16-1271-2016, 2016
Short summary
Short summary
Aerosol number size distributions were measured in Arctic Russia continuously during 4 years. The particles' seasonal characteristics and sources were identified based on these data. In early spring, elevated concentrations were detected during episodes of Arctic haze and during days of secondary particle formation. In summer, Siberian forests biogenic emissions had a significant impact on particle number and mass. These are the first such results obtained from the region.
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
Short summary
We illustrate a method to measure the size distribution of a snow particle metric from macro photos of snow particles. This snow particle metric corresponds well to the optically equivalent effective radius. Our results evidence the impact of grain shape on albedo, indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of surface roughness on the shortwave infrared albedo.
A. Solomon, G. Feingold, and M. D. Shupe
Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, https://doi.org/10.5194/acp-15-10631-2015, 2015
Short summary
Short summary
The maintenance of cloud ice production in Arctic mixed-phase stratocumulus is investigated in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. It is demonstrated that IN recycling through subcloud sublimation prolongs ice production. Competing feedbacks between dynamical mixing and recycling are found to slow the rate of ice lost. The results of this study have important implications for the maintenance of phase partitioning in Arctic clouds.
S. Eckhardt, B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J. H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I. E. Nielsen, J. K. Nøjgaard, J. Quaas, P. K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. von Salzen, and A. Stohl
Atmos. Chem. Phys., 15, 9413–9433, https://doi.org/10.5194/acp-15-9413-2015, https://doi.org/10.5194/acp-15-9413-2015, 2015
Short summary
Short summary
The concentrations of sulfate, black carbon and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality. In this study, we evaluate sulfate and BC concentrations from different updated models and emissions against a comprehensive pan-Arctic measurement data set. We find that the models improved but still struggle to get the maximum concentrations.
M. D. Fielding, J. C. Chiu, R. J. Hogan, G. Feingold, E. Eloranta, E. J. O'Connor, and M. P. Cadeddu
Atmos. Meas. Tech., 8, 2663–2683, https://doi.org/10.5194/amt-8-2663-2015, https://doi.org/10.5194/amt-8-2663-2015, 2015
F. Besson, E. Bazile, C. Soci, J.-M. Soubeyroux, G. Ouzeau, and M. Perrin
Adv. Sci. Res., 12, 137–140, https://doi.org/10.5194/asr-12-137-2015, https://doi.org/10.5194/asr-12-137-2015, 2015
Short summary
Short summary
Due to the evolution of the observation network, hourly 2m temperature analysis performed by reanalysis systems shows temporal inhomogeneities. In this study, the diurnal temperature cycle has been reconstructed for stations which only record extreme temperatures to produce new “pseudo” hourly temperature observations. Then they are provided to analysis systems; the results have shown that it enables reducing the bias in temperature analysis.
J. Tonttila, E. J. O'Connor, A. Hellsten, A. Hirsikko, C. O'Dowd, H. Järvinen, and P. Räisänen
Atmos. Chem. Phys., 15, 5873–5885, https://doi.org/10.5194/acp-15-5873-2015, https://doi.org/10.5194/acp-15-5873-2015, 2015
M. Lothon, F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder, J. Vilà-Guerau de Arellano, P Durand, O. Hartogensis, D. Legain, P. Augustin, B. Gioli, D. H. Lenschow, I. Faloona, C. Yagüe, D. C. Alexander, W. M. Angevine, E Bargain, J. Barrié, E. Bazile, Y. Bezombes, E. Blay-Carreras, A. van de Boer, J. L. Boichard, A. Bourdon, A. Butet, B. Campistron, O. de Coster, J. Cuxart, A. Dabas, C. Darbieu, K. Deboudt, H. Delbarre, S. Derrien, P. Flament, M. Fourmentin, A. Garai, F. Gibert, A. Graf, J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroonenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene, F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-Cascón, C. Rufin-Soler, F. Saïd, M. Sastre-Marugán, Y. Seity, G. J. Steeneveld, P. Toscano, O. Traullé, D. Tzanos, S. Wacker, N. Wildmann, and A. Zaldei
Atmos. Chem. Phys., 14, 10931–10960, https://doi.org/10.5194/acp-14-10931-2014, https://doi.org/10.5194/acp-14-10931-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
W. M. Angevine, E. Bazile, D. Legain, and D. Pino
Atmos. Chem. Phys., 14, 8165–8172, https://doi.org/10.5194/acp-14-8165-2014, https://doi.org/10.5194/acp-14-8165-2014, 2014
A. Hirsikko, E. J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C. R. Wood, M. Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K. E. J. Lehtinen, T. Laurila, T. Petäjä, M. Kulmala, and Y. Viisanen
Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, https://doi.org/10.5194/amt-7-1351-2014, 2014
B. Brecht and H. Frank
Adv. Sci. Res., 11, 1–6, https://doi.org/10.5194/asr-11-1-2014, https://doi.org/10.5194/asr-11-1-2014, 2014
Related subject area
Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Cited articles
Akish, E. and Morris, S.: MODF for Eureka, Canada, during YOPP SOP1 and SOP2, Norwegian Meteorological Institute, https://doi.org/10.21343/R85J-TC61, 2023a.
Akish, E. and Morris, S.: MODF for Tiksi, Russia, during YOPP SOP1 and SOP2, Norwegian Meteorological Institute, https://doi.org/10.21343/5BWN-W881, 2023b.
Akish, E. and Morris, S.: MODF for Utqiagvik, Alaska, during YOPP SOP1 and SOP2, Norwegian Meteorological Institute, https://doi.org/10.21343/A2DX-NQ55, 2023c.
Arduini, G., Balsamo, G., Dutra, E., Day, J. J., Sandu, I., Boussetta, S., and Haiden, T.: Impact of a multi-layer snow scheme on near-surface weather forecasts, J. Adv. Model. Earth Sy., 11, 4687–4710, https://doi.org/10.1029/2019MS001725, 2019.
Atlaskin, E. and Vihma, T.: Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland, Q. J. Roy. Meteor. Soc., 138, 1440–1451, https://doi.org/10.1002/qj.1885, 2012.
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Mon. Weather Rev., 139, 3887–3905, 2011.
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., van den Hurk, B., Hirschi, M., and Betts, A. K.: A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the integrated forecast system, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008JHM1068.1, 2009.
Batrak, Y. and Müller, M.: On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice, Nat. Commun., 10, 4170, https://doi.org/10.1038/s41467-019-11975-3, 2019.
Bauer, P., Magnusson, L., Thépaut, J.-N., and Hamill, T. M.: Aspects of ECMWF model performance in polar areas, Q. J. Roy. Meteor. Soc., 142, 583–596, https://doi.org/10.1002/qj.2449, 2016.
Bazile, E. and Azouz, N.: Merged model data files (MMDFs) for the Météo-France ARPEGE global forecast model for various polar sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/T31Z-J391, 2023a.
Bazile, E. and Azouz, N.: MMDFs for the Météo-France AROME regional forecast model for various Arctic sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/JZH3-2470, 2023b.
Bazile, E., Marquet, P., Bouteloup, Y., and Bouyssel, F.: The Turbulent Kinetic Energy (TKE) scheme in the NWP models at Météo-France, ECMWF GABLS Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, 7–10 November, 127–136, 2011.
Bazile, E., Azouz, N., Napoly, A., and Loo, C.: Impact of the 1D sea-ice model GELATO in the global model ARPEGE, France, 6–03, http://bluebook.meteoinfo.ru/index.php?year=2020&ch_=2 (last access: 11 July 2024), 2020.
Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass flux convection scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886, 2001.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., Vitart, F., and Balsamo, G.: Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales, Q. J. Roy. Meteor. Soc., 134, 1337–1351, https://doi.org/10.1002/qj.289, 2008.
Bélair, S., Brown, R., Mailhot, J., Bilodeau, B., and Crevier, L.: Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results, J. Hydrometeorol., 4, 371–386, 2003.
Bélair, S., Mailhot, J., Girard, C., and Vaillancourt, P.: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system, Mon. Weather Rev., 133, 1938–1960, https://doi.org/10.1175/MWR2958.1, 2005.
Beljaars, A. C. M. and Holtslag, A. A. M.: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2, 1991.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE–AROME model configuration in the ALADIN–HIRLAM NWP system, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017.
Bougeault, P.: Cloud ensemble relations for use in higher order models of the planetary boundary layer, J. Atmos. Sci., 39, 2691–2700, 1982.
Bougeault, P.: A simple parameterisation of the large scale effects of cumulus convection, Mon. Weather Rev., 113, 2108–2121, https://doi.org/10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2, 1985.
Bromwich, D. H., Werner, K., Casati, B., Powers, J. G., Gorodetskaya, I. V., Massonnet, F., Vitale, V., Heinrich, V. J., Liggett, D., Arndt, S., Barja, B., Bazile, E., Carpentier, S., Carrasco, J. F., Choi, T., Choi, Y., Colwell, S. R., Cordero, R. R., Gervasi, M., Haiden, T., Hirasawa, N., Inoue, J., Jung, T., Kalesse, H., Kim, S.-J., Lazzara, M. A., Manning, K. W., Norris, K., Park, S.-J., Reid, P., Rigor, I., Rowe, P. M., Schmithüsen, H., Seifert, P., Sun, Q., Uttal, T., Zannoni, M., and Zou, X.: The Year of Polar Prediction in the Southern Hemisphere (YOPP-SH), B. Am. Meteorol. Soc., 101, E1653–E1676, https://doi.org/10.1175/BAMS-D-19-0255.1, 2020.
Buizza, R., Bidlot, J.-R., Janousek, M., Keeley, S., Mogensen, K., and Richardson, D.: New IFS cycle brings sea-ice coupling and higher ocean resolution, ECMWF Newsl., 150, 14–17, https://doi.org/10.21957/xbov3ybily, 2017.
Casati, B.: MMDFs for the Environment and Climate Change Canada-CAPS regional forecast model for various Arctic sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/2BX6-6027, 2023.
Casati, B., Robinson, T., Lemay, F., Køltzow, M., Haiden, T., Mekis, E., Lespinas, F., Fortin, V., Gascon, G., Milbrandt, J., and Smith, G.: Performance of the Canadian Arctic Prediction System during the YOPP Special Observing Periods, Atmosphere-Ocean, 61, 246–272, https://doi.org/10.1080/07055900.2023.2191831, 2023.
Catry, B., Geleyn, J. F., Bouyssel, F., Cedilnik, J., Brožková, R., and Derková, M.: A new sub-grid scale lift formulation in a mountain drag parameterisation scheme, Meteorol. Z., 17, 193–208, https://doi.org/10.1127/0941-2948/2008/0272, 2008.
Cheng, Y., Canuto, V. M., and Howard, A. M.: An Improved Model for the Turbulent PBL, J. Atmos. Sci., 59, 1550–1565, https://doi.org/10.1175/1520-0469(2002)059<1550:AIMFTT>2.0.CO;2, 2002.
Coté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC–MRD Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation, Mon. Weather Rev., 126, 1373–1395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2, 1998.
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteor. Soc., 126, 1–30, https://doi.org/10.1002/qj.49712656202, 2000.
Cuxart, J., Holtslag, A. A. M., Beare, R. J., Bazile, E., Beljaars, A., Cheng, A., Conangla, L., Ek, M., Freedman, F., Hamdi, R., Kerstein, A., Kitagawa, H., Lenderink, G., Lewellen, D., Mailhot, J., Mauritsen, T., Perov, V., Schayes, G., Steeneveld, G.-J., Svensson, G., Taylor, P., Weng, W., Wunsch, S., and Xu, K.-M.: Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer, Bound.-Lay. Meteorol., 118, 273–303, https://doi.org/10.1007/s10546-005-3780-1, 2006.
Day, J.: MMDFs for the ECMWF-IFS global forecast model for various Polar sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/A6KA-7142, 2023.
Day, J. J., Arduini, G., Sandu, I., Magnusson, L., Beljaars, A., Balsamo, G., Rodwell, M., and Richardson, D.: Measuring the Impact of a New Snow Model Using Surface Energy Budget Process Relationships, J. Adv. Model. Earth Sy., 12, e2020MS002144, https://doi.org/10.1029/2020MS002144, 2020.
Day, J. J., Keeley, S., Arduini, G., Magnusson, L., Mogensen, K., Rodwell, M., Sandu, I., and Tietsche, S.: Benefits and challenges of dynamic sea ice for weather forecasts, Weather Clim. Dynam., 3, 713–731, https://doi.org/10.5194/wcd-3-713-2022, 2022.
Delage, Y.: Parametrizing sub-grid scale vertical transport in atmospheric models under statically stable conditions, Bound.-Lay. Meteorol., 82, 23–48, https://doi.org/10.1023/A:1000132524077, 1997.
Delage, Y. and Girard, C.: Stability functions correct at the free convection limit and consistent for both the surface and Ekman layers, Bound.-Lay. Meteorol., 58, 19–31, https://doi.org/10.1007/BF00120749, 1992.
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system, Remote Sens. Environ., 116, 140–158, https://doi.org/10.1016/j.rse.2010.10.017, 2012.
Ďurán, I. B., Geleyn, J., and Váňa, F.: A compact model for the stability dependency of TKE production–destruction–conversion terms valid for the whole range of Richardson numbers, J. Atmos. Sci., 71, 3004–3026, 2014.
Dyer, A. J. and Hicks, B. B.: Flux-Gradient Relationships in the Constant Flux Layer, Q. J. Roy. Meteor. Soc. 96, 715–721, 1970.
Emmerson, C. and Lahn, G.: Arctic opening: Opportunity and risk in the high north, Lloyds Rep., 59 pp., https://www.lloyds.com/news-and-insights/risk-reports/library/arctic-opening-opportunity-and-risk-in-the-high-north (last access: 11 July 2024), 2012.
Forbes, R. M. and Ahlgrimm, M.: On the Representation of High-Latitude Boundary Layer Mixed-Phase Cloud in the ECMWF Global Model, Mon. Weather Rev., 142, 3425–3445, https://doi.org/10.1175/MWR-D-13-00325.1, 2014.
Frank, H.: MMDFs for the DWD-ICON global forecast model for various Arctic sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/09KM-BJ07, 2023.
Gerard, L. and Geleyn, J.-F.: Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution, Q. J. Roy. Meteor. Soc., 131, 2293–2312, https://doi.org/10.1256/qj.04.72, 2005.
Gerard, L., Piriou, J., Brožková, R., Geleyn, J., and Banciu, D.: Cloud and Precipitation Parameterization in a Meso-Gamma-Scale Operational Weather Prediction Model, Mon. Weather Rev., 137, 3960–3977, https://doi.org/10.1175/2009MWR2750.1, 2009.
Girard, C., Plante, A., Desgagné, M., McTaggart-Cowan, R., Côté, J., Charron, M., Gravel, S., Lee, V., Patoine, A., Qaddouri, A., Roch, M., Spacek, L., Tanguay, M., Vaillancourt, P. A., and Zadra, A.: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type, Mon. Weather Rev., 142, 1183–1196, https://doi.org/10.1175/MWR-D-13-00255.1, 2014.
Goessling, H. F., Jung, T., Klebe, S., Baeseman, J., Bauer, P., Chen, P., Chevallier, M., Dole, R., Gordon, N., Ruti, P., Bradley, A., Bromwich, D. H., Casati, B., Chechin, D., Day, J. J., Massonnet, F., Mills, B., Renfrew, I., Smith, G., and Tatusko, R.: Paving the way for the Year of Polar Prediction, B. Am. Meteorol. Soc., 97, ES85–ES88, https://doi.org/10.1175/BAMS-D-15-00270.1, 2016.
Haiden, T., Sandu, I., Balsamo, G., Arduini, G., and Beljaars, A.: Addressing biases in near-surface forecasts, ECMWF Newsletter, 157, 20–25, https://doi.org/10.21957/eng71d53th, 2018.
Hartten, L. M. and Khalsa, S. J. S.: The H-K Variable SchemaTable developed for the YOPPsiteMIP, https://doi.org/10.5281/zenodo.6463464, 2022.
Heise, E., Ritter, B., and Schrodin, R.: Operational implementation of the multilayer soil model, COSMO Technical Reports no. 9, Consortium for Small-Scale Modelling, Offenbach am Main, Germany, https://doi.org/10.5676/DWD_pub/nwv/cosmo-tr_9, 2006.
Hogan, R. J. and Bozzo, A.: A Flexible and Efficient Radiation Scheme for the ECMWF Model, J. Adv. Model. Earth Sy., 10, 1990–2008, https://doi.org/10.1029/2018MS001364, 2018.
Holt, J.: Merged Observatory Data File (MODF) for Ny Alesund, Norwegian Meteorological Institute, https://doi.org/10.21343/Y89M-6393, 2023.
Holtslag, A. A. M. and De Bruin, H. A. R.: Applied Modeling of the Nighttime Surface Energy Balance over Land, J. Appl. Meteorol. Clim., 27, 689–704, 1988.
Holtslag, A. A. M., Svensson, G., Baas, P., Basu, S., Beare, B., Beljaars, A. C. M., Bosveld, F. C., Cuxart, J., Lindvall, J., Steeneveld, G. J., Tjernström, M., and Van De Wiel, B. J. H.: Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models, B. Am. Meteorol. Soc., 94, 1691–1706, 2013.
Huang, L., Mariani, Z., and Crawford, R.: MODF for Erik Nielsen Airport, Whitehorse, Canada during YOPP SOP1 and SOP2, Norwegian Meteorological Institute, https://doi.org/10.21343/A33E-J150, 2023a.
Huang, L., Mariani, Z., and Crawford, R.: MODF for Iqaluit Airport, Iqaluit, Nunavut, Canada during YOPP SOP1 and SOP2, Norwegian Meteorological Institute, https://doi.org/10.21343/YRNF-CK57, 2023b.
Iacono, M., Delamere, J., Mlawer, E., Shephard, M., Clough, S., and Collins, W.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113D, 13103, https://doi.org/10.1029/2008JD009944, 2008.
Jung, T. and Matsueda, M.: Verification of global numerical weather forecasting systems in polar regions using TIGGE data, Q. J. Roy. Meteor. Soc., 142, 574–582, https://doi.org/10.1002/qj.2437, 2016.
Jung, T., Gordon, N. D., Bauer, P., Bromwich, D. H., Chevallier, M., Day, J. J., Dawson, J., Doblas-Reyes, F., Fairall, C., Goessling, H. F., Holland, M., Inoue, J., Iversen, T., Klebe, S., Lemke, P., Losch, M., Makshtas, A., Mills, B., Nurmi, P., Perovich, D., Reid, P., Renfrew, I. A., Smith, G., Svensson, G., Tolstykh, M., and Yang, Q.: Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales, B. Am. Meteorol. Soc., 97, 1631–1647, https://doi.org/10.1175/BAMS-D-14-00246.1, 2016.
Kähnert, M., Sodemann, H., and Remes, T. M., Fortelius, C., Bazile, E., and Esau, I.: Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model, Bound.-Lay. Meteorol., 186, 373–397, https://doi.org/10.1007/s10546-022-00762-1, 2023.
Kain, J. S. and Fritsch, J. M.: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization, J. Atmos. Sci., 47, 2784–2802, https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2, 1990.
Karlsson, J. and Svensson, G.: Consequences of poor representation of Arctic sea-ice albedo and cloud-radiation interactions in the CMIP5 model ensemble, Geophys. Res. Lett., 40, 4374–4379, https://doi.org/10.1002/grl.50768, 2013.
Köhler, M., Ahlgrimm, M., and Beljaars, A.: Unified treatment of dry convective and stratocumulus topped boundary layers in the ECMWF model, Q. J. Roy. Meteor. Soc., 137, 43–57, 2011.
Køltzow, M., Casati, B., Bazile, E., Haiden, T., and Valkonen, T.: An NWP Model Intercomparison of Surface Weather Parameters in the European Arctic during the Year of Polar Prediction Special Observing Period Northern Hemisphere 1, Weather Forecast., 34, 959–983, https://doi.org/10.1175/WAF-D-19-0003.1, 2019.
Lawrence, H., Bormann, N., Sandu, I., Day, J., Farnan, J., and Bauer, P.: Use and impact of Arctic observations in the ECMWF Numerical Weather Prediction system, Q. J. Roy. Meteor. Soc., 145, 3432–3454, https://doi.org/10.1002/qj.3628, 2019.
Lenderink, G. and Holtslag, A. A. M.: An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers, Q. J. Roy. Meteor. Soc., 130, 3405–3427, https://doi.org/10.1256/qj.03.117, 2004.
Li, J. and Barker, H. W.: A radiation algorithm with correlated-k distribution. Part I: Local thermal equilibrium, J. Atmos. Sci., 62, 286–309, 2005.
Lott, F. and Miller, M. J.: A new subgrid-scale orographic drag parametrization: Its formulation and testing, Q. J. Roy. Meteor. Soc., 123, 101–127, 1997.
Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, 1979.
Mariani, Z., Morris, S. M., Uttal, T., Akish, E., Crawford, R., Huang, L., Day, J., Tjernström, J., Godøy, Ø., Ferrighi, L., Hartten, L. M., Holt, J., Cox, C. J., O'Connor, E., Pirazzini, R., Maturilli, M., Prakash, G., Mather, J., Strong, K., Fogal, P., Kustov, V., Svensson, G., Gallagher, M., and Vasel, B.: Special Observing Period (SOP) data for the Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP), Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, 2024.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013.
Milbrandt, J. A. and Morrison, H.: Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part III: Introduction of Multiple Free Categories, J. Atmos. Sci., 73, 975–995, https://doi.org/10.1175/JAS-D-15-0204.1, 2016.
Milbrandt, J. A., Bélair, S., Faucher, M., Vallée, M., Carrera, M. L., and Glazer, A.: The Pan-Canadian High Resolution (2.5 km) Deterministic Prediction System, Weather Forecast., 31, 1791–1816, https://doi.org/10.1175/WAF-D-16-0035.1, 2016.
Miller, N. B., Shupe, M. D., Lenaerts, J. T. M., Kay, J. E., de Boer, G., and Bennartz, R.: Process-based model evaluation using surface energy budget observations in central Greenland, J. Geophys. Res.-Atmos., 123, 4777–4796, https://doi.org/10.1029/2017JD027377, 2018.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res., 102D, 16663–16682, 1997.
Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests, J. Atmos. Sci., 72, 287–311, https://doi.org/10.1175/JAS-D-14-0065.1, 2015.
Morrison, H., Milbrandt, J. A., Bryan, G. H., Ikeda, K., Tessendorf, S. A., and Thompson, G.: Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part II: Case Study Comparisons with Observations and Other Schemes, J. Atmos. Sci., 72, 312–339, https://doi.org/10.1175/JAS-D-14-0066.1, 2015.
Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M., Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, L., Bjørge, D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., and Vignes, O.: AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model, Weather Forecast., 32, 609–627, https://doi.org/10.1175/WAF-D-16-0099.1, 2017.
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface Processes for Meteorological Models, Mon. Weather Rev., 117, 536–549, 1989.
O'Connor, E.: Merged observation data file for Sodankyla, Norwegian Meteorological Institute, https://doi.org/10.21343/M16P-PQ17, 2023.
Pailleux, J., Geleyn, J.-F., Hamrud, M., Courtier, P., Thépaut, J.-N., Rabier, F., Andersson, E., Burridge, D., Simmons, A., Salmond, D., Khatib, E., and Fischer, C.: Twenty-five years of IFS/ARPEGE, ECMWF Newsletter, 141, 22–30, https://doi.org/10.21957/FTU6MFVY, 2014.
Pergaud, J., Masson, V., Malardel, S., and Couvreux, F.: A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction, Bound.-Lay. Meteorol., 132, 83–106, https://doi.org/10.1007/s10546-009-9388-0, 2009.
Pinty, J.-P. and Jabouille, P.: A mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation, in: Proc. Conf. on Cloud Physics, Everett, WA, August 1998, 217–220, 1998.
Pithan, F., Medeiros, B., and Mauritsen, T.: Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions, Clim. Dynam., 43, 289–303, https://doi.org/10.1007/s00382-013-1964-9, 2014.
Pithan, F., Ackerman, A., Angevine, W. M., Hartung, K., Ickes, L., Kelley, M., Medeiros, B., Sandu, I., Steeneveld, G.-J., Sterk, H. A. M., Svensson, G., Vaillancourt, P. A., and Zadra, A.: Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison, J. Adv. Model. Earth Sy., 8, 1345–1357, https://doi.org/10.1002/2016MS000630, 2016.
Prill, F, Reinert, D., Rieger, D., and Zängl, G.: ICON Tutorial – Working with the ICON model, https://doi.org/10.5676/dwd_pub/nwv/icon_tutorial2020, 2020.
Raschendorfer, M.: The new turbulence parameterization of LM, COSMO Newsl., 1, 89–97, 2001.
Remes, T.: MMDFs for the MetNorway AROME regional forecast model for various Arctic sites, Norwegian Meteorological Institute [data set], https://doi.org/10.21343/47AX-MY36, 2023.
Rodwell, M. J. and Palmer, T. N.: Using numerical weather prediction to assess climate models, Q. J. Roy. Meteor. Soc., 133, 129–146, https://doi.org/10.1002/qj.23, 2007.
Sandu, I., Beljars, A., Bechtold, P., Mauritsen, T., and Balsamo, G.: Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models?, J. Adv. Model. Earth Sy., 5, 117–133, https://doi.org/10.1002/jame.20013, 2013.
Sedlar, J., Tjernström, M., Rinke, A., Orr, A., Cassano, J., and Fettweis, X.: Confronting Arctic troposphere, clouds, and surface energy budget representations in regional climate models with observations, J. Geophys. Res.-Atmos., 125, e2019JD031783, https://doi.org/10.1029/2019JD031783, 2020.
Seifert, A.: A revised cloud microphysical parameterization for COSMO-LME, COSMO News Letter no. 7, http://www.cosmo-model.org (last access: 11 July 2024), 2008.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.
Seity, Y., Lac, C., Bouyssel, F., Riette, S., and Bouteloup, Y.: Cloud and microphysical schemes in ARPEGE and AROME models, in: Proceedings of the Workshop on Parametrization of Clouds and Precipitation (ECMWF), Reading, UK, 5–8 November 2012, https://www.ecmwf.int/en/elibrary/ (last access: 16 July 2024), 2012.
Siebesma, A. P., Soares, P. M., and Teixeira, J.: A combined eddy diffusivity mass-flux approach for the convective boundary layer, J. Atmos. Sci., 64, 1230–1248, https://doi.org/10.1175/JAS3888.1, 2007.
Soares, P., Miranda, P., Siebesma, A., and Teixeira, J.: An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection, Q. J. Roy. Meteor. Soc., 130, 3365–3383, https://doi.org/10.1256/qj.03.223, 2004.
Solomon, A., Shupe, M. D., Svensson, G., Barton, N. P., Batrak, Y., Bazile, E., Day, J. J., Doyle, J. D., Frank, H. P., Keeley, S., Remes, T., and Tolstykh, M.: The winter central Arctic surface energy budget: A model evaluation using observations from the MOSAiC campaign, Elem. Sci. Anthr., 11, 00104, https://doi.org/10.1525/elementa.2022.00104, 2023.
Svensson, G. and Karlsson, J.: On the Arctic Wintertime Climate in Global Climate Models, J. Climate, 24, 5757–5771, https://doi.org/10.1175/2011JCLI4012.1, 2011.
Tarasova, T. A. and Fomin, B. A.: The Use of New Parameterizations for Gaseous Absorption in the CLIRAD-SW Solar Radiation Code for Models, J. Atmos. Ocean. Tech., 24, 1157–1162, https://doi.org/10.1175/JTECH2023.1, 2007.
Tiedtke, M.: Representation of Clouds in Large-Scale Models, Mon. Weather Rev., 121, 3040–3061, 1993.
Tjernström, M., Žagar, M., Svensson, G., Cassano, J. J., Pfeifer, S., Rinke, A., Wyser, K., Dethloff, K., Jones, C., Semmler, T., and Shaw, M.: Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project, Bound.-Lay. Meteorol., 117, 337–381, https://doi.org/10.1007/s10546-004-7954-z, 2005.
Tjernström, M., Svensson, G., Magnusson, L., Brooks, I. M., Prytherch, J., Vüllers, J., and Young, G.: Central Arctic weather forecasting: Confronting the ECMWF IFS with observations from the Arctic Ocean 2018 expedition, Q. J. Roy. Meteor. Soc., 147, 1278–1299, https://doi.org/10.1002/qj.3971, 2021.
Tolstykh, M.: MMDFs for the Roshydromet-SLAV global forecast model for various Arctic sites, Nor. Meteorol. Inst. [data set], https://doi.org/10.21343/J4SJ-4N61, 2023.
Tolstykh, M., Shashkin, V., Fadeev, R., and Goyman, G.: Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core, Geosci. Model Dev., 10, 1961–1983, https://doi.org/10.5194/gmd-10-1961-2017, 2017.
Tolstykh, M. A., Fadeev, R. Yu., Shashkin, V. V., Goyman, G. S., Zaripov, R. B., Kiktev, D. B., Makhnorylova, S. V., Mizyak, V. G., and Rogutov, V. S.: Multiscale Global Atmosphere Model SLAV: the Results of Medium-range Weather Forecasts, Russ. Meteorol. Hydro+., 43, 773–779, https://doi.org/10.3103/S1068373918110080, 2018.
Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P., Darby, L. S., Burkhart, J. F., Cox, C. J., Schmeisser, L. N., Haiden, T., Maturilli, M., Shupe, M. D., De Boer, G., Saha, A., Grachev, A. A., Crepinsek, S. M., Bruhwiler, L., Goodison, B., McArthur, B., Walden, V. P., Dlugokencky, E. J., Persson, P. O. G., Lesins, G., Laurila, T., Ogren, J. A., Stone, R., Long, C. N., Sharma, S., Massling, A., Turner, D. D., Stanitski, D. M., Asmi, E., Aurela, M., Skov, H., Eleftheriadis, K., Virkkula, A., Platt, A., Førland, E. J., Iijima, Y., Nielsen, I. E., Bergin, M. H., Candlish, L., Zimov, N. S., Zimov, S. A., O'Neill, N. T., Fogal, P. F., Kivi, R., Konopleva-Akish, E. A., Verlinde, J., Kustov, V. Y., Vasel, B., Ivakhov, V. M., Viisanen, Y., and Intrieri, J. M.: International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium, B. Am. Meteorol. Soc., 97, 1033–1056, https://doi.org/10.1175/BAMS-D-14-00145.1, 2015.
Uttal, T., Hartten, L. M., Khalsa, S. J., Casati, B., Svensson, G., Day, J., Holt, J., Akish, E., Morris, S., O'Connor, E., Pirazzini, R., Huang, L. X., Crawford, R., Mariani, Z., Godøy, Ø., Tjernström, J. A. K., Prakash, G., Hickmon, N., Maturilli, M., and Cox, C. J.: Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics, Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, 2024.
Van de Wiel, B. J. H., Vignon, E., Baas, P., van Hooijdonk, I. G. S., van der Linden, S. J. A., van Hooft, J. A., Bosveld, F. C., de Roode, S. R., Moene, A. F., and Genthon, C.: Regime Transitions in Near-Surface Temperature Inversions: A Conceptual Model, J. Atmos. Sci., 74, 1057–1073, https://doi.org/10.1175/JAS-D-16-0180.1, 2017.
van Hooijdonk, I. G. S., Donda, J. M. M., Clercx, H. J. H., Bosveld, F. C., and van de Wiel, B. J. H.: Shear Capacity as Prognostic for Nocturnal Boundary Layer Regimes, J. Atmos. Sci., 72, 1518–1532, https://doi.org/10.1175/JAS-D-14-0140.1, 2015.
van Meijgaard, E., van Ulft, L., Lenderink, G., De Roode, S., Wipfler, E. L., Boers, R., and van Timmermans, R.: Refinement and application of a regional atmospheric model for climate scenario calculations of Western Europe, KVR Research Rep. 054/12, 44 pp., http://library.wur.nl/WebQuery/wurpubs/fulltext/312258 (last access: 11 July 2024), 2012.
Vignon, E., van de Wiel, B. J. H., van Hooijdonk, I. G. S., Genthon, C., van der Linden, S. J. A., van Hooft, J. A., Baas, P., Maurel, W., Traullé, O., and Casasanta, G.: Stable boundary-layer regimes at Dome C, Antarctica: observation and analysis, Q. J. Roy. Meteor. Soc., 143, 1241–1253, https://doi.org/10.1002/qj.2998, 2017.
Wallace, J. M., Tibaldi, S., and Simmons, A. J.: Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography, Q. J. Roy. Meteor. Soc., 109, 683–717, https://doi.org/10.1002/qj.49710946202, 1983.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Q. J. Roy. Meteor. Soc., 141, 563–579, https://doi.org/10.1002/qj.2378, 2015.
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate...