Articles | Volume 17, issue 13
https://doi.org/10.5194/gmd-17-5369-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-17-5369-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill
CORRESPONDING AUTHOR
Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
Science and Solutions for a Changing Planet DTP, Grantham Institute for Climate Change and the Environment, Imperial College London, London, SW7 2AZ, UK
now at: Met Office, Fitzroy Road, Exeter EX1 3PB, UK
Daniel Shapero
Polar Science Center, Applied Physics Laboratory, University of Washington, WA 98195, USA
Colin J. Cotter
Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
David A. Ham
Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
Related authors
No articles found.
Joshua Hope-Collins, Abdalaziz Hamdan, Werner Bauer, Lawrence Mitchell, and Colin Cotter
Geosci. Model Dev., 18, 4535–4569, https://doi.org/10.5194/gmd-18-4535-2025, https://doi.org/10.5194/gmd-18-4535-2025, 2025
Short summary
Short summary
Effectively using modern supercomputers requires massively parallel algorithms. Time-parallel algorithms calculate the system state (e.g. the atmosphere) at multiple times simultaneously and have exciting potential but are tricky to implement and still require development. We have developed software to simplify implementing and testing the ParaDiag algorithm on supercomputers. We show that for some atmospheric problems it can enable faster or more accurate solutions than traditional techniques.
Sia Ghelichkhan, Angus Gibson, D. Rhodri Davies, Stephan C. Kramer, and David A. Ham
Geosci. Model Dev., 17, 5057–5086, https://doi.org/10.5194/gmd-17-5057-2024, https://doi.org/10.5194/gmd-17-5057-2024, 2024
Short summary
Short summary
We introduce the Geoscientific ADjoint Optimisation PlaTform (G-ADOPT), designed for inverse modelling of Earth system processes, with an initial focus on mantle dynamics. G-ADOPT is built upon Firedrake, Dolfin-Adjoint and the Rapid Optimisation Library, which work together to optimise models using an adjoint method, aligning them with seismic and geologic datasets. We demonstrate G-ADOPT's ability to reconstruct mantle evolution and thus be a powerful tool in geosciences.
Ian Joughin, Daniel Shapero, and Pierre Dutrieux
The Cryosphere, 18, 2583–2601, https://doi.org/10.5194/tc-18-2583-2024, https://doi.org/10.5194/tc-18-2583-2024, 2024
Short summary
Short summary
The Pine Island and Thwaites glaciers are losing ice to the ocean rapidly as warmer water melts their floating ice shelves. Models help determine how much such glaciers will contribute to sea level. We find that ice loss varies in response to how much melting the ice shelves are subjected to. Our estimated losses are also sensitive to how much the friction beneath the glaciers is reduced as it goes afloat. Melt-forced sea level rise from these glaciers is likely to be less than 10 cm by 2300.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Daniel R. Shapero, Jessica A. Badgeley, Andrew O. Hoffman, and Ian R. Joughin
Geosci. Model Dev., 14, 4593–4616, https://doi.org/10.5194/gmd-14-4593-2021, https://doi.org/10.5194/gmd-14-4593-2021, 2021
Short summary
Short summary
This paper describes a new software package called "icepack" for modeling the flow of ice sheets and glaciers. Glaciologists use tools like icepack to better understand how ice sheets flow, what role they have played in shaping Earth's climate, and how much sea level rise we can expect in the coming decades to centuries. The icepack package includes several innovations to help researchers describe and solve interesting glaciological problems and to experiment with the underlying model physics.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Andrew O. Hoffman, Knut Christianson, Daniel Shapero, Benjamin E. Smith, and Ian Joughin
The Cryosphere, 14, 4603–4609, https://doi.org/10.5194/tc-14-4603-2020, https://doi.org/10.5194/tc-14-4603-2020, 2020
Short summary
Short summary
The West Antarctic Ice Sheet has long been considered geometrically prone to collapse, and Thwaites Glacier, the largest glacier in the Amundsen Sea, is likely in the early stages of disintegration. Using observations of Thwaites Glacier velocity and elevation change, we show that the transport of ~2 km3 of water beneath Thwaites Glacier has only a small and transient effect on glacier speed relative to ongoing thinning driven by ocean melt.
Cited articles
Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and Wells, G. N.: The FEniCS Project Version 1.5, Archive of Numerical Software, 3, 100, https://doi.org/10.11588/ans.2015.100.20553, 2015. a
Alnæs, M. S.: UFL: a finite element form language, in: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, edited by Logg, A., Mardal, K.-A., and Wells, G., Lecture Notes in Computational Science and Engineering, 303–338, Springer, Berlin, Heidelberg, ISBN 978-3-642-23099-8, https://doi.org/10.1007/978-3-642-23099-8_17, 2012. a
Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and Wells, G. N.: Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM T. Math. Software, 40, 9:1–9:37, https://doi.org/10.1145/2566630, 2014. a
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, in: Modern Software Tools in Scientific Computing, edited by: Arge, E., Bruaset, A. M., and Langtangen, H. P., 163–202, Birkhäuser Press, 1997. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc/TAO Users Manual, Tech. Rep. ANL-21/39 – Revision 3.18, Argonne National Laboratory, 2022a. a
Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes, L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F., Zampini, S., Zhang, H., Zhang, H., and Zhang, J.: PETSc Web page, https://petsc.org/ (last access: 26 June 2024), 2022b. a
Betteridge, J. D., Farrell, P. E., and Ham, D. A.: Code Generation for Productive, Portable, and Scalable Finite Element Simulation in Firedrake, Computing in Science & Engineering, 23, 8–17, https://doi.org/10.1109/MCSE.2021.3085102, 2021. a
Brenner, S. C. and Scott, L. R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, NY, ISBN 978-0-387-75933-3, 978-0-387-75934-0, https://doi.org/10.1007/978-0-387-75934-0, 2008. a
Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, ISBN 978-0-89871-514-9, https://doi.org/10.1137/1.9780898719208, 2002. a
Davies, D. R., Kramer, S. C., Ghelichkhan, S., and Gibson, A.: Towards automatic finite-element methods for geodynamics via Firedrake, Geosci. Model Dev., 15, 5127–5166, https://doi.org/10.5194/gmd-15-5127-2022, 2022. a
Farrell, P. E., Piggott, M. D., Pain, C. C., Gorman, G. J., and Wilson, C. R.: Conservative interpolation between unstructured meshes via supermesh construction, Comput. Methods Appl. Mech. Eng., 198, 2632–2642, https://doi.org/10.1016/j.cma.2009.03.004, 2009. a
Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Automated Derivation of the Adjoint of High-Level Transient Finite Element Programs, SIAM Journal on Scientific Computing, 35, C369–C393, https://doi.org/10.1137/120873558, 2013. a
firedrake-zenodo: Software used in “Consistent Point Data Assimilation in Firedrake and Icepack: Unknown Conductivity Demonstration” (Firedrake_20230316.0, Zenodo [software], https://doi.org/10.5281/zenodo.7741741, 2023a. a
firedrake-zenodo: Software used in “Consistent Point Data Assimilation in Firedrake and Icepack: Groundwater Hydrology and Ice Shelf Demonstrations” (Firedrake_20230405.1), Zenodo [software], https://doi.org/10.5281/zenodo.7801478, 2023b. a
Gardner, A. S., Fahnestock, M., and Scambos, T. A.: MEaSUREs ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, Version 1, National Snow and Ice Data Center [data set], 10, https://doi.org/10.5067/6II6VW8LLWJ7, 2019. a
Ham, D., Mitchell, L., Homolya, M., Luporini, F., Gibson, T., Kelly, P., Cotter, C., Lange, M., Kramer, S., Shipton, J., Yamazaki, H., Paganini, A., and Kärnä, T.: Automating the generation of finite element dynamical cores with Firedrake, in: EGU General Assembly Conference Abstracts, p. 17987, 2017. a
Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani, N., Vorderwuelbecke, S., Gregory, T. J., Betteridge, J., Shapero, D. R., Nixon-Hill, R. W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, I., Gibson, T. H., Homolya, M., Sun, T., McRae, A. T. T., Luporini, F., Gregory, A., Lange, M., Funke, S. W., Rathgeber, F., Bercea, G.-T., and Markall, G. R.: Firedrake User Manual, Imperial College London and University of Oxford and Baylor University and University of Washington, 1st edn., https://doi.org/10.25561/104839, 2023. a
Hansen, P. C. and O'Leary, D.: The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM J. Sci. Comput., 14, 1487–1503, https://doi.org/10.1137/0914086, 1993. a
Haran, T., Bohlander, J., Scambos, T., Painter, T., and Fahnestock, M.: MODIS Mosaic of Antarctica 2008–2009 (MOA2009) Image Map, Version 2, https://doi.org/10.5067/4ZL43A4619AF, 2021. a
Homolya, M., Kirby, R. C., and Ham, D. A.: Exposing and exploiting structure: optimal code generation for high-order finite element methods, arXiv:1711.02473 [cs], http://arxiv.org/abs/1711.02473, 2017. a
Homolya, M., Mitchell, L., Luporini, F., and Ham, D. A.: TSFC: a structure-preserving form compiler, SIAM J. Sci. Comput., 40, C401–C428, https://doi.org/10.1137/17M1130642, 2018. a
Joughin, I., MacAyeal, D. R., and Tulaczyk, S.: Basal shear stress of the Ross ice streams from control method inversions, J. Geophys. Res.-Sol. Ea., 109, B09405, https://doi.org/10.1029/2003JB002960, 2004. a
Kirby, R. C.: Algorithm 839: FIAT, a new paradigm for computing finite element basis functions, ACM T. Math. Software, 30, 502–516, https://doi.org/10.1145/1039813.1039820, 2004. a
Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., and Baptista, A. M.: Thetis coastal ocean model: discontinuous Galerkin discretization for the three-dimensional hydrostatic equations, Geosci. Model Dev., 11, 4359–4382, https://doi.org/10.5194/gmd-11-4359-2018, 2018. a
Lange, M., Mitchell, L., Knepley, M. G., and Gorman, G. J.: Efficient mesh management in Firedrake using PETSc-DMPlex, SIAM J. Sci. Comput., 38, S143–S155, https://doi.org/10.1137/15M1026092, 2016. a
Logg, A.: Efficient Representation of Computational Meshes, Int. J. Comput. Sci. Eng., 4, 283, https://doi.org/10.1504/IJCSE.2009.029164, 2009. a
MacAyeal, D. R.: The basal stress distribution of Ice Stream E, Antarctica, inferred by control methods, J. Geophys. Res., 97, 595, https://doi.org/10.1029/91JB02454, 1992. a
MacAyeal, D. R., Bindschadler, R. A., and Scambos, T. A.: Basal friction of ice stream E, West Antarctica, J. Glaciol., 41, 247–262, 1995. a
Maddison, J. R. and Farrell, P. E.: Directional integration on unstructured meshes via supermesh construction, J. Comput. Phys., 231, 4422–4432, https://doi.org/10.1016/j.jcp.2012.02.009, 2012. a, b
Maljaars, J. M., Richardson, C. N., and Sime, N.: LEoPart: A particle library for FEniCS, Comput. Math. Appl., 81, 289–315, https://doi.org/10.1016/j.camwa.2020.04.023, 2021. a
Mitusch, S. K.: An Algorithmic Differentiation Tool for FEniCS, Master's thesis, University of Oslo, http://hdl.handle.net/10852/63505, 2018. a
Mitusch, S. K., Funke, S. W., and Dokken, J. S.: dolfin-adjoint 2018.1: automated adjoints for FEniCS and Firedrake, J. Open Source Softw., 4, 1292, https://doi.org/10.21105/joss.01292, 2019. a
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 3, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/FPSU0V1MWUB6, 2022. a
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nat. Geosci., 13, 132–137, 2020. a, b
Naumann, U.: The Art of Differentiating Computer Programs, Software, Environments and Tools, Society for Industrial and Applied Mathematics, ISBN 978-1-61197-206-1, https://doi.org/10.1137/1.9781611972078, 2011. a, b
Nixon-Hill, R. W. and Shapero, D.: ReubenHill/point-data-paper-code: Consistent Point Data Assimilation in Firedrake and Icepack: Code (v1.1.1), Zenodo [code], https://doi.org/10.5281/zenodo.7950441, 2023. a
Picard, R. R. and Cook, R. D.: Cross-validation of regression models, J. Am. Stat. A., 79, 575–583, 1984. a
Rathgeber, F., Ham, D. A., Mitchell, L., Lange, M., Luporini, F., McRae, A. T. T., Bercea, G.-T., Markall, G. R., and Kelly, P. H. J.: Firedrake: automating the finite element method by composing abstractions, ACM T. Math. Software, 43, 1–27, https://doi.org/10.1145/2998441, arXiv: 1501.01809, 2016. a, b
Roberts, K. J., Olender, A., Franceschini, L., Kirby, R. C., Gioria, R. S., and Carmo, B. S.: spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver, Geosci. Model Dev., 15, 8639–8667, https://doi.org/10.5194/gmd-15-8639-2022, 2022. a
Scambos, T. A., Haran, T. M., Fahnestock, M. A., Painter, T. H., and Bohlander, J.: MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size, Remote Sens. Environ., 111, 242–257, https://doi.org/10.1016/j.rse.2006.12.020, 2007. a
Schwedes, T., Ham, D. A., Funke, S. W., and Piggott, M. D.: Mesh dependence in PDE-constrained optimisation an application in tidal turbine array layouts, Springer, ISBN 978-3-319-59483-5, https://doi.org/10.1007/978-3-319-59483-5, 2017. a, b
Shapero, D., Lilien, D., Badgeley, J., Hoffman, A., Ham, D. A., and Hills, B.: icepack/icepack: data assimilation improvements (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.7897023, 2023. a
Sun, N.-Z.: Inverse problems in groundwater modeling, vol. 6, Springer Science & Business Media, 2013. a
Vieli, A., Payne, A. J., Du, Z., and Shepherd, A.: Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula, Philos. T. Roy. Soc. A, 364, 1815–1839, https://doi.org/10.1098/rsta.2006.1800, 2006. a
Villa, U., Petra, N., and Ghattas, O.: HIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and Linearized Bayesian Inference, ACM Trans. Math. Softw., 47, 16, https://doi.org/10.1145/3428447, 2021. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Short summary
Scientists often use models to study complex processes, like the movement of ice sheets, and compare them to measurements for estimating quantities that are hard to measure. We highlight an approach that ensures accurate results from point data sources (e.g. height measurements) by evaluating the numerical solution at true point locations. This method improves accuracy, aids communication between scientists, and is well-suited for integration with specialised software that automates processes.
Scientists often use models to study complex processes, like the movement of ice sheets, and...
Special issue