Articles | Volume 17, issue 8
https://doi.org/10.5194/gmd-17-3433-2024
https://doi.org/10.5194/gmd-17-3433-2024
Model description paper
 | Highlight paper
 | 
30 Apr 2024
Model description paper | Highlight paper |  | 30 Apr 2024

NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps

Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton

Related authors

The effects of storms and a transient sandy veneer on the interannual planform evolution of a low-relief coastal cliff and shore platform at Sargent Beach, Texas, USA
Rose V. Palermo, Anastasia Piliouras, Travis E. Swanson, Andrew D. Ashton, and David Mohrig
Earth Surf. Dynam., 9, 1111–1123, https://doi.org/10.5194/esurf-9-1111-2021,https://doi.org/10.5194/esurf-9-1111-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary

Cited articles

Adams, P. N., Anderson, R. S., and Revenaugh, J.: Microseismic measurement of wave-energy delivery to a rocky coast, Geology, 30, 895, https://doi.org/10.1130/0091-7613(2002)030<0895:MMOWED>2.0.CO;2, 2002. 
Adams, P. N., Storlazzi, C. D., and Anderson, R. S.: Nearshore wave-induced cyclical flexing of sea cliffs, J. Geophys. Res., 110, 2004JF000217, https://doi.org/10.1029/2004JF000217, 2005. 
Ashton, A. D., Murray, A. B., Littlewood, R., Lewis, D. A., and Hong, P.: Fetch-limited self-organization of elongate water bodies, Geology, 37, 187–190, https://doi.org/10.1130/G25299A.1, 2009. 
Bossis, R., Regard, V., Carretier, S., and Choy, S.: Evidence of slow millennial cliff retreat rates using cosmogenic nuclides in coastal colluvium, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-3020, 2024. 
Bramante, J. F., Perron, J. T., Ashton, A. D., and Donnelly, J. P.: Experimental quantification of bedrock abrasion under oscillatory flow, Geology, 48, 541–545, https://doi.org/10.1130/G47089.1, 2020. 
Download
Executive editor
Coastal erosion is a process with widespread human impact. This well-written paper explains the NEWTS coastal erosion model in terms which will be accessible for geoscientists and beyond. It is recommended reading for anyone with an interest in this application area.
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Share