Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1831-2024
https://doi.org/10.5194/gmd-17-1831-2024
Model evaluation paper
 | 
29 Feb 2024
Model evaluation paper |  | 29 Feb 2024

New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4

Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman

Related authors

The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea – answers from a high-resolution ocean model
Thai To Duy, Marine Herrmann, Claude Estournel, Patrick Marsaleix, Thomas Duhaut, Long Bui Hong, and Ngoc Trinh Bich
Ocean Sci., 18, 1131–1161, https://doi.org/10.5194/os-18-1131-2022,https://doi.org/10.5194/os-18-1131-2022, 2022
Short summary

Related subject area

Oceanography
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary

Cited articles

Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015. 
Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I., Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea, J. Geophys. Res.-Oceans, 115, C06018, https://doi.org/10.1029/2008JC005154, 2010. 
Boutin, J., Martin, N., Kolodziejczyk, N., and Reverdin, G.: Interannual anomalies of SMOS sea surface salinity, Remote Sens. Environ., 180, 128–136, https://doi.org/10.1016/j.rse.2016.02.053, 2016. 
Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Picot, N.: FES2014, a new tidal model – Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, Prague, 9–13 May 2016, 1956, https://lps16.esa.int/page_session186.php#1956p (last access: 18 August 2023), 2016. 
Centurioni, L. R., Niiler, P. P., and Lee, D. K.: Observations of inflow of Philippine sea surface water into the South China Sea through the Luzon strait, J. Phys. Oceanogr., 34, 113–121, https://doi.org/10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2, 2004. 
Download
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Share