Articles | Volume 17, issue 4
https://doi.org/10.5194/gmd-17-1563-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-17-1563-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model
Hauke Schmidt
CORRESPONDING AUTHOR
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Sebastian Rast
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Jiawei Bao
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
now at: Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
Amrit Cassim
Department of Physics, University of Cambridge, Cambridge, UK
Shih-Wei Fang
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Diego Jimenez-de la Cuesta
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
now at: Deutscher Wetterdienst (DWD), Offenbach, Germany
Paul Keil
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
now at: German Climate Computing Centre (DKRZ), Hamburg, Germany
Lukas Kluft
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Clarissa Kroll
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
now at: Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
Theresa Lang
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Ulrike Niemeier
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Andrea Schneidereit
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
now at: Deutscher Wetterdienst (DWD), Offenbach, Germany
Andrew I. L. Williams
Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
Bjorn Stevens
Climate Physics Department, Max Planck Institute for Meteorology, Hamburg, Germany
Data sets
Sounding data of SO284 H. Schulz et al. https://doi.org/10.5281/zenodo.7051674
CERES Energy Balanced and Filled (EBAF) TOA and Surface Monthly means data in netCDF Edition 4.2 NASA/LARC/SD/ASDC https://doi.org/10.5067/TERRA-AQUA-NOAA20/CERES/EBAF_L3B004.2
Model code and software
Code for "Effects of vertical grid spacing on the climate simulated in the ICON-Sapphire global storm-resolving model" Hauke Schmidt https://doi.org/10.17617/3.Z10MPA
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
A recent development in numerical simulations of the global atmosphere is the increase in...