Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-961-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN
Piyoosh Jaysaval
CORRESPONDING AUTHOR
Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
Glenn E. Hammond
Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
Timothy C. Johnson
Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA
Related authors
Piyooh Jaysaval, Judith L. Robinson, and Timothy C. Johnson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-478, https://doi.org/10.5194/hess-2020-478, 2020
Preprint withdrawn
Short summary
Short summary
As contaminants within groundwater prefer to flow through coarse-grained rocks, a detailed mapping of these rocks in the subsurface is vital for effective monitoring and remediation planning to help minimize risk to human health and the environment at legacy waste sites. This work provides images that are obtained from airborne electromagnetic data to delineate subsurface rocks at the Hanford Site, a nuclear waste site located in southeastern Washington State, USA.
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev., 18, 1413–1425, https://doi.org/10.5194/gmd-18-1413-2025, https://doi.org/10.5194/gmd-18-1413-2025, 2025
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Piyooh Jaysaval, Judith L. Robinson, and Timothy C. Johnson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-478, https://doi.org/10.5194/hess-2020-478, 2020
Preprint withdrawn
Short summary
Short summary
As contaminants within groundwater prefer to flow through coarse-grained rocks, a detailed mapping of these rocks in the subsurface is vital for effective monitoring and remediation planning to help minimize risk to human health and the environment at legacy waste sites. This work provides images that are obtained from airborne electromagnetic data to delineate subsurface rocks at the Hanford Site, a nuclear waste site located in southeastern Washington State, USA.
Cited articles
Alshehri, F. and Abdelrahman, K.: Groundwater resources exploration of Harrat
Khaybar area, northwest Saudi Arabia, using electrical resistivity
tomography, Journal of King Saud University-Science, 33, 101468, https://doi.org/10.1016/j.jksus.2021.101468, 2021. a
Badmus, B. and Olatinsu, O.: Geoelectric mapping and characterization of
limestone deposits of Ewekoro formation, southwestern Nigeria, Journal of
Geology and Mining Research, 1, 008–018, https://academicjournals.org/journal/JGMR/article-full-text-pdf/5FEFE571242 (last access: 30 January 2023), 2009. a
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley,
M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan,
P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc Users
Manual, Tech. Rep. ANL-95/11 – Revision 3.15, Argonne National Laboratory, https://petsc.org/release/docs/manual/manual.pdf (last access: 27 January 2023),
2021. a
Bery, A. A., Saad, R., Mohamad, E. T., Jinmin, M., Azwin, I., Tan, N. A., and
Nordiana, M.: Electrical resistivity and induced polarization data
correlation with conductivity for iron ore exploration, The Electronic
Journal of Geotechnical Engineering, 17, 3223–3233, 2012. a
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an
intuitive open source software for complex geoelectrical inversion/modeling,
Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020. a
Camporese, M., Cassiani, G., Deiana, R., Salandin, P., and Binley, A.: Coupled
and uncoupled hydrogeophysical inversions using ensemble K alman filter
assimilation of ERT-monitored tracer test data, Water Resour. Res., 51,
3277–3291, 2015. a
Caputo, R., Piscitelli, S., Oliveto, A., Rizzo, E., and Lapenna, V.: The use of
electrical resistivity tomographies in active tectonics: examples from the
Tyrnavos Basin, Greece, J. Geodyn., 36, 19–35, 2003. a
Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., and Oldenburg, D. W.:
SimPEG: An open source framework for simulation and gradient based
parameter estimation in geophysical applications, Comput. Geosci.,
85, 142–154, https://doi.org/10.1016/j.cageo.2015.09.015, 2015. a, b, c
Coggon, J.: Electromagnetic and electrical modeling by the finite element
method, Geophysics, 36, 132–155, 1971. a
Dahlin, T.: 2D resistivity surveying for environmental and engineering
applications, First break, 14, https://doi.org/10.3997/1365-2397.1996014, 1996. a
Dahlin, T.: The development of DC resistivity imaging techniques, Comput.
Geosci., 27, 1019–1029, 2001. a
Dahlin, T. and Zhou, B.: A numerical comparison of 2D resistivity imaging with
10 electrode arrays, Geophys. Prospect., 52, 379–398, 2004. a
Das, U. C.: Direct current electric potential computation in an inhomogeneous
and arbitrarily anisotropic layered earthl, Geophys. Prospect., 43,
417–432, https://doi.org/10.1111/j.1365-2478.1995.tb00260.x, 1995. a
Dey, A. and Morrison, H. F.: Resistivity modeling for arbitrarily shaped
three-dimensional structures, Geophysics, 44, 753–780, 1979. a
Ellis, R. and Oldenburg, D.: The pole-pole 3-D Dc-resistivity inverse problem:
a conjugategradient approach, Geophys. J. Int., 119,
187–194, 1994. a
Gabarrón, M., Martínez-Pagán, P., Martínez-Segura, M. A.,
Bueso, M. C., Martínez-Martínez, S., Faz, Á., and Acosta,
J. A.: Electrical resistivity tomography as a support tool for
physicochemical properties assessment of near-surface waste materials in a
mining tailing pond (El Gorguel, SE Spain), Minerals, 10, 559,
https://doi.org/10.3390/min10060559, 2020. a
González-Quirós, A. and Comte, J.-C.: Hydrogeophysical model
calibration and uncertainty analysis via full integration of PEST/PEST++ and
COMSOL, Environ. Modell. Softw., 145, 105183, https://doi.org/10.1016/j.envsoft.2021.105183, 2021. a
Greggio, N., Giambastiani, B., Balugani, E., Amaini, C., and Antonellini, M.:
High-resolution electrical resistivity tomography (ERT) to characterize the
spatial extension of freshwater lenses in a salinized coastal aquifer, Water,
10, 1067, https://doi.org/10.3390/w10081067, 2018. a
Hammond, G. E.: PFLOTRAN, Bitbucket Repository [code], https://bitbucket.org/pflotran/pflotran, last access 27 January 2023. a
Hammond, G. E., Lichtner, P. C., Lu, C., and Mills, R. T.: PFLOTRAN: Reactive
flow & transport code for use on laptops to leadership-class supercomputers,
in: Groundwater Reactive Transport Models, edited by: Zhang, F., Yeh,
G.-T. G., and Parker, J. C., Bentham Science Publishers, 141–159,
https://doi.org/10.2174/978160805306311201010141, 2012. a, b, c
Hammond, G. E., Lichtner, P. C., and Mills, R. T.: Evaluating the performance
of parallel subsurface simulators: An illustrative example with PFLOTRAN,
Water Resour. Res., 50, 208–228, https://doi.org/10.1002/2012WR013483, 2014. a, b, c, d
Hestenes, M. and Stiefel, E.: Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stand., 49, 409–436,
https://doi.org/10.6028/jres.049.044, 1952. a
Jahandari, H. and Farquharson, C. G.: A finite-volume solution to the
geophysical electromagnetic forward problem using unstructured grids,
Geophysics, 79, E287–E302, 2014. a
Jaysaval, P., Shantsev, D., and de la Kethulle de Ryhove, S.: Fast multimodel
finite-difference controlled-source electromagnetic simulations based on a
Schur complement approach, Geophysics, 79, E315–E327,
https://doi.org/10.1190/geo2014-0043.1, 2014. a
Jaysaval, P., Hammond, G. E., and Johnson, T. C.: ERT modeling and inversion
using PFLOTRAN v4.0, Zenodo [code and data set], https://doi.org/10.5281/zenodo.6191926, 2022. a
Johnson, T. C., Versteeg, R. J., Ward, A., Day-Lewis, F. D., and Revil, A.:
Improved hydrogeophysical characterization and monitoring through parallel
modeling and inversion of time-domain resistivity andinduced-polarization
data, Geophysics, 75, WA27–WA41, https://doi.org/10.1190/1.3475513, 2010. a, b, c, d, e, f, g, h, i, j
Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., and
Elwaseif, M.: Monitoring groundwater-surface water interaction using
time-series and time-frequency analysis of transient three-dimensional
electrical resistivity changes, Water Resour. Res., 48, W07506, https://doi.org/10.1029/2012WR011893, 2012. a
Johnson, T. C., Hammond, G. E., and Chen, X.: PFLOTRAN-E4D: A parallel open
source PFLOTRAN module for simulating time-lapse electrical resistivity
data, Comput. Geosci., 99, 72–80,
https://doi.org/10.1016/j.cageo.2016.09.006, 2017. a
Karypis, G. and Schloegel, K.: ParMetis: Parallel Graph Partitioning and Sparse Matrix Ordering Library, Version 4.0, Tech. Rep., http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf (last access: 27 January 2023), 2013. a
Kessouri, P., Johnson, T., Day-Lewis, F. D., Wang, C., Ntarlagiannis, D., and
Slater, L. D.: Post-remediation geophysical assessment: Investigating
long-term electrical geophysical signatures resulting from bioremediation at
a chlorinated solvent contaminated site, J. Environ. Manage.,
302, 113944, https://doi.org/10.1016/j.jenvman.2021.113944, 2022. a
Lee, T.: An integral equation and its solution for some two-and
three-dimensional problems in resistivity and induced polarization,
Geophys. J. Int., 42, 81–95, 1975. a
Li, Y. and Spitzer, K.: Three-dimensional DC resistivity forward modelling
using finite elements in comparison with finite-difference solutions,
Geophys. J. Int., 151, 924–934, 2002. a
Loke, M., Chambers, J., Rucker, D., Kuras, O., and Wilkinson, P.: Recent
developments in the direct-current geoelectrical imaging method, J.
Appl. Geophys., 95, 135–156, 2013. a
Lysdahl, A. K., Bazin, S., Christensen, C., Ahrens, S., Günther, T., and
Pfaffhuber, A. A.: Comparison between 2D and 3D ERT inversion for engineering
site investigations – a case study from Oslo Harbour, Near Surf. Geophys.,
15, 201–209, 2017. a
Martínez, J., Rey, J., Sandoval, S., Hidalgo, M., and Mendoza, R.:
Geophysical prospecting using ERT and IP techniques to locate Galena veins,
Remote Sensing, 11, 2923, https://doi.org/10.3390/rs11242923, 2019. a
Mboh, C., Huisman, J., Van Gaelen, N., Rings, J., and Vereecken, H.: Coupled
hydrogeophysical inversion of electrical resistances and inflow measurements
for topsoil hydraulic properties under constant head infiltration, Near
Surf. Geophys., 10, 413–426, 2012. a
Méndez-Delgado, S., Gómez-Treviño, E., and Pérez-Flores, M.:
Forward modelling of direct current and low-frequency electromagnetic fields
using integral equations, Geophys. J. Int., 137, 336–352,
1999. a
Meyerhoff, S. B., Maxwell, R. M., Revil, A., Martin, J. B., Karaoulis, M., and
Graham, W. D.: Characterization of groundwater and surface water mixing in a
semiconfined karst aquifer using time-lapse electrical resistivity
tomography, Water Resour. Res., 50, 2566–2585, 2014. a
Mills, R. T., Hammond, G. E., Lichtner, P. C., Sripathi, V., Mahinthakumar, G.,
and Smith, B. F.: Modeling Subsurface Reactive Flows Using Leadership-Class
Computing, in: 5th Annual Conference of Scientific Discovery through Advanced
Computing (SciDAC 2009), J. Phys. Conf.
Ser., 180, 012062, https://doi.org/10.1088/1742-6596/180/1/012062, 2009. a
Nocedal, J. and Wright, S.: Numerical optimization, 2nd edn., Springer Science &
Business Media, 664 pp., ISBN 978-0-387-30303-1, https://doi.org/10.1007/978-0-387-40065-5, 2006. a, b, c
Park, S., Yi, M.-J., Kim, J.-H., and Shin, S. W.: Electrical resistivity
imaging (ERI) monitoring for groundwater contamination in an uncontrolled
landfill, South Korea, J. Appl. Geophys., 135, 1–7, https://doi.org/10.1016/j.jappgeo.2016.07.004, 2016. a
Park, S. K. and Van, G. P.: Inversion of pole-pole data for 3-D resistivity
structure beneath arrays of electrodes, GEOPHYSICS, 56, 951–960,
https://doi.org/10.1190/1.1443128, 1991. a
Penz, S., Chauris, H., Donno, D., and Mehl, C.: Resistivity modelling with
topography, Geophys. J. Int., 194, 1486–1497, 2013. a
Pervago, E., Mousatov, A., and Shevnin, V.: Analytical solution for the
electric potential in arbitrary anisotropic layered media applying the set of
Hankel transforms of integer order, Geophys. Prospect., 54, 651–661,
https://doi.org/10.1111/j.1365-2478.2006.00555.x, 2006. a
Pleasants, M., Neves, F. d. A., Parsekian, A., Befus, K., and Kelleners, T.:
Hydrogeophysical Inversion of Time-Lapse ERT Data to Determine Hillslope
Subsurface Hydraulic Properties, Water Resour. Res., 58,
e2021WR031073, https://doi.org/10.1029/2021WR031073, 2022. a
Revil, A., Karaoulis, M., Johnson, T., and Kemna, A.: Some low-frequency
electrical methods for subsurface characterization and monitoring in
hydrogeology, Hydrogeol. J., 20, 617–658, 2012. a
Richards, K., Revil, A., Jardani, A., Henderson, F., Batzle, M., and Haas, A.:
Pattern of shallow ground water flow at Mount Princeton Hot Springs,
Colorado, using geoelectrical methods, J. Volcanol. Geoth.
Res., 198, 217–232, 2010. a
Rizzo, E., Colella, A., Lapenna, V., and Piscitelli, S.: High-resolution images
of the fault-controlled High Agri Valley basin (Southern Italy) with deep and
shallow electrical resistivity tomographies, Physics and Chemistry of the Earth, Parts A/B/C, 29, 321–327, https://doi.org/10.1016/j.pce.2003.12.002, 2004.
a
Rockhold, M. L., Robinson, J. L., Parajuli, K., Song, X., Zhang, Z., and
Johnson, T. C.: Groundwater characterization and monitoring at a complex
industrial waste site using electrical resistivity imaging, Hydrogeol.
J., 28, 2115–2127, 2020. a
Rosales, R. M., Martínez-Pagan, P., Faz, A., and Moreno-Cornejo, J.:
Environmental monitoring using electrical resistivity tomography (ERT) in the
subsoil of three former petrol stations in SE of Spain, Water Air Soil
Poll., 223, 3757–3773, 2012. a
Rucker, D. F., Myers, D. A., Cubbage, B., Levitt, M. T., Noonan, G. E.,
McNeill, M., Henderson, C., and Lober, R. W.: Surface geophysical
exploration: developing noninvasive tools to monitor past leaks around
Hanford’s tank farms, Environ. Monit. Assess., 185,
995–1010, 2013. a
Schulz, R.: The method of integral equation in the direct current resistivity
method and its accuracy, Journal of Geophysics, 56, 192–200, 1985. a
Singha, K., Johnson, T. C., Day-Lewis, F. D., and Slater, L. D.: Electrical
Imaging for Hydrogeology, The Groundwater Project, Guelph, Ontario, Canada, 74 pp., ISBN 978-1-77470-011-2,
2022. a
Spitzer, K.: A 3-D finite-difference algorithm for DC resistivity modelling
using conjugate gradient methods, Geophys. J. Int., 123,
903–914, 1995. a
Storz, H., Storz, W., and Jacobs, F.: Electrical resistivity tomography to
investigate geological structures of the earth's upper crust, Geophys.
Prospect., 48, 455–472, 2000. a
The HDF Group: Hierarchical Data Format Version 5, The HDF Group [code],
http://www.hdfgroup.org/HDF5 (last access: 27 January 2023), 2022. a
Uhlemann, S., Chambers, J., Falck, W. E., Tirado Alonso, A.,
Fernández González, J. L., and Espín de Gea, A.: Applying
electrical resistivity tomography in ornamental stone mining: challenges and
solutions, Minerals, 8, 491, https://doi.org/10.3390/min8110491, 2018. a
Zhang, J., Mackie, R. L., and Madden, T. R.: 3-D resistivity forward modeling
and inversion using conjugate gradients, Geophysics, 60, 1313–1325, 1995. a
Zhdanov, M. S. and Keller, G. V.: The geoelectrical methods in geophysical
exploration, 2nd edn., in: Methods in geochemistry and geophysics, volume 31, Elsevier, 873 pp., ISBN 978-0444896780, 1994. a
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
We present a robust and highly scalable implementation of numerical forward modeling and...