Articles | Volume 16, issue 3
https://doi.org/10.5194/gmd-16-961-2023
https://doi.org/10.5194/gmd-16-961-2023
Development and technical paper
 | 
07 Feb 2023
Development and technical paper |  | 07 Feb 2023

Massively parallel modeling and inversion of electrical resistivity tomography data using PFLOTRAN

Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson

Related authors

Stratigraphic Identification with Airborne Electromagnetic Methods at the Hanford Site, Washington
Piyooh Jaysaval, Judith L. Robinson, and Timothy C. Johnson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-478,https://doi.org/10.5194/hess-2020-478, 2020
Preprint withdrawn
Short summary

Related subject area

Numerical methods
Hydro-geomorphological modelling of leaky wooden dam efficacy from reach to catchment scale with CAESAR-Lisflood 1.9j
Joshua M. Wolstenholme, Christopher J. Skinner, David Milan, Robert E. Thomas, and Daniel R. Parsons
Geosci. Model Dev., 18, 1395–1411, https://doi.org/10.5194/gmd-18-1395-2025,https://doi.org/10.5194/gmd-18-1395-2025, 2025
Short summary
Enhancing single precision with quasi-double precision: achieving double-precision accuracy in the Model for Prediction Across Scales – Atmosphere (MPAS-A) version 8.2.1
Jiayi Lai, Lanning Wang, Qizhong Wu, Yizhou Yang, and Fang Wang
Geosci. Model Dev., 18, 1089–1102, https://doi.org/10.5194/gmd-18-1089-2025,https://doi.org/10.5194/gmd-18-1089-2025, 2025
Short summary
Advances in land surface forecasting: a comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand
Marieke Wesselkamp, Matthew Chantry, Ewan Pinnington, Margarita Choulga, Souhail Boussetta, Maria Kalweit, Joschka Bödecker, Carsten F. Dormann, Florian Pappenberger, and Gianpaolo Balsamo
Geosci. Model Dev., 18, 921–937, https://doi.org/10.5194/gmd-18-921-2025,https://doi.org/10.5194/gmd-18-921-2025, 2025
Short summary
Subgrid corrections for the linear inertial equations of a compound flood model – a case study using SFINCS 2.1.1 Dollerup release
Maarten van Ormondt, Tim Leijnse, Roel de Goede, Kees Nederhoff, and Ap van Dongeren
Geosci. Model Dev., 18, 843–861, https://doi.org/10.5194/gmd-18-843-2025,https://doi.org/10.5194/gmd-18-843-2025, 2025
Short summary
Introducing Iterative Model Calibration (IMC) v1.0: a generalizable framework for numerical model calibration with a CAESAR-Lisflood case study
Chayan Banerjee, Kien Nguyen, Clinton Fookes, Gregory Hancock, and Thomas Coulthard
Geosci. Model Dev., 18, 803–818, https://doi.org/10.5194/gmd-18-803-2025,https://doi.org/10.5194/gmd-18-803-2025, 2025
Short summary

Cited articles

Alshehri, F. and Abdelrahman, K.: Groundwater resources exploration of Harrat Khaybar area, northwest Saudi Arabia, using electrical resistivity tomography, Journal of King Saud University-Science, 33, 101468, https://doi.org/10.1016/j.jksus.2021.101468, 2021. a
Badmus, B. and Olatinsu, O.: Geoelectric mapping and characterization of limestone deposits of Ewekoro formation, southwestern Nigeria, Journal of Geology and Mining Research, 1, 008–018, https://academicjournals.org/journal/JGMR/article-full-text-pdf/5FEFE571242 (last access: 30 January 2023), 2009. a
Bery, A. A., Saad, R., Mohamad, E. T., Jinmin, M., Azwin, I., Tan, N. A., and Nordiana, M.: Electrical resistivity and induced polarization data correlation with conductivity for iron ore exploration, The Electronic Journal of Geotechnical Engineering, 17, 3223–3233, 2012. a
Blanchy, G., Saneiyan, S., Boyd, J., McLachlan, P., and Binley, A.: ResIPy, an intuitive open source software for complex geoelectrical inversion/modeling, Comput. Geosci., 137, 104423, https://doi.org/10.1016/j.cageo.2020.104423, 2020. a
Download
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Share