Articles | Volume 16, issue 24
https://doi.org/10.5194/gmd-16-7237-2023
https://doi.org/10.5194/gmd-16-7237-2023
Model evaluation paper
 | 
15 Dec 2023
Model evaluation paper |  | 15 Dec 2023

Calibration of absorbing boundary layers for geoacoustic wave modeling in pseudo-spectral time-domain methods

Carlos Spa, Otilio Rojas, and Josep de la Puente

Related authors

Synthetic seismicity distribution in Guerrero–Oaxaca subduction zone, Mexico, and its implications on the role of asperities in Gutenberg–Richter law
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, Quetzalcoatl Rodríguez-Pérez, Otilio Rojas, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 13, 6361–6381, https://doi.org/10.5194/gmd-13-6361-2020,https://doi.org/10.5194/gmd-13-6361-2020, 2020
Short summary
Modeling active fault systems and seismic events by using a fiber bundle model – example case: the Northridge aftershock sequence
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, José Carlos Carrasco-Jiménez, Víctor Márquez-Ramírez, and Josep de la Puente
Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019,https://doi.org/10.5194/se-10-1519-2019, 2019
Short summary
A stochastic rupture earthquake code based on the fiber bundle model (TREMOL v0.1): application to Mexican subduction earthquakes
Marisol Monterrubio-Velasco, Quetzalcóatl Rodríguez-Pérez, Ramón Zúñiga, Doreen Scholz, Armando Aguilar-Meléndez, and Josep de la Puente
Geosci. Model Dev., 12, 1809–1831, https://doi.org/10.5194/gmd-12-1809-2019,https://doi.org/10.5194/gmd-12-1809-2019, 2019
Short summary

Related subject area

Numerical methods
Numerical stabilization methods for level-set-based ice front migration
Gong Cheng, Mathieu Morlighem, and G. Hilmar Gudmundsson
Geosci. Model Dev., 17, 6227–6247, https://doi.org/10.5194/gmd-17-6227-2024,https://doi.org/10.5194/gmd-17-6227-2024, 2024
Short summary
Modelling chemical advection during magma ascent
Hugo Dominguez, Nicolas Riel, and Pierre Lanari
Geosci. Model Dev., 17, 6105–6122, https://doi.org/10.5194/gmd-17-6105-2024,https://doi.org/10.5194/gmd-17-6105-2024, 2024
Short summary
Consistent point data assimilation in Firedrake and Icepack
Reuben W. Nixon-Hill, Daniel Shapero, Colin J. Cotter, and David A. Ham
Geosci. Model Dev., 17, 5369–5386, https://doi.org/10.5194/gmd-17-5369-2024,https://doi.org/10.5194/gmd-17-5369-2024, 2024
Short summary
A computationally efficient parameterization of aerosol, cloud and precipitation pH for application at global and regional scale (EQSAM4Clim-v12)
Swen Metzger, Samuel Rémy, Jason E. Williams, Vincent Huijnen, and Johannes Flemming
Geosci. Model Dev., 17, 5009–5021, https://doi.org/10.5194/gmd-17-5009-2024,https://doi.org/10.5194/gmd-17-5009-2024, 2024
Short summary
Assessing the benefits of approximately exact step sizes for Picard and Newton solver in simulating ice flow (FEniCS-full-Stokes v.1.3.2)
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024,https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary

Cited articles

Bérenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185–200, 1994. a, b
Bérenger, J.-P.: Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys., 127, 363–379, 1996. a
Bérenger, J.-P.: A historical review of the absorbing boundary conditions for electromagnetics, Forum for Electromagnetic Research Methods and Application Technologies, 1, 1–28, 2015. a
Bodony, D.-J.: Analysis of sponge zones for computational fluid mechanics, J. Comput. Phys., 212, 681–702, 2006. a
Bording, R.-P.: Finite difference modeling-nearly optimal sponge boundary conditions, in: SEG Annual Meeting, Society of Exploration Geophysicists, https://onepetro.org/SEGAM/proceedings-abstract/SEG04/All-SEG04/SEG-2004-1921/91656 (last access: 10 December 2023), 2004. a, b
Download
Short summary
This paper develops a calibration methodology of all absorbing techniques typically used by Fourier pseudo-spectral time-domain (PSTD) methods for geoacoustic wave simulations. The main contributions of the paper are (a) an implementation and quantitative comparison of all absorbing techniques available for PSTD methods through a simple and robust numerical experiment, and (b) a validation of these absorbing techniques in several 3-D seismic scenarios with gradual heterogeneity complexities.