Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T.: Spectral Methods in Fluid Dynamics, Springer,
https://doi.org/10.1146/annurev.fl.19.010187.002011, 1988.
a
Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705–708, 1985.
a,
b,
c,
d,
e
Chew, W. and Liu, Q.: Perfectly matched layers for elastodynamics: A new absorbing boundary condition, J. Comput. Acoust., 4, 341–359, 1996.
a,
b
Chew, W. and Weedon, W.: A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microw. Opt. Techn. Let., 7, 599–604, 1994. a
Claerbout, J., Green, C., and Green, I.: Imaging the earth's interior, vol. 6, Blackwell Scientific Publications, Springer, Oxford, 1985.
a,
b
Collino, F. and Tsogka, C.: Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics, 66, 294–307, 2001. a
Daudt, C., Braile, L., Nowack, R., and Chiang, C.: A comparison of finite-difference and Fourier method calculations of synthetic seismograms, B. Seismol. Soc. Am., 79, 1210–1230, 1989. a
Dolenc, D.: Results from Two Studies in Seismology: Seismic Observations and Modeling in the Santa Clara Valley, California; Observations and Removal of the Long-period Noise at the Monterey Ocean Bottom Broadband Station (MOBB), University of California, Berkeley,
https://www.proquest.com/docview/305362967 (last access: 10 December 2023), 2006. a
Filoux, E., Callé, S., Certon, D., Lethiecq, M., and Levassort, F.: Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods, Journal of Acoustal Sociecty of America, 123, 4165–4173, 2008. a
Fornberg, B.: The pseudospectral method: Comparisons with finite differences for the elastic wave equation, Geophysics, 52, 483–501, 1987.
a,
b
Fornberg, B.: The pseudospectral method: Accurate representation of interfaces in elastic wave calculations, Geophysics, 53, 625–637, 1988. a
Fornberg, B.: A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, ISBN 0-521-64564-6, 1998.
a,
b,
c
Gao, Y., Song, H., Zhang, J., and Yao, Z.: Comparison of artificial absorbing boundaries for acoustic wave equation modelling, Explor. Geophys., 48, 76–93, 2017. a
Gazdag, J.: Modeling of the acoustic wave equation with transform methods, Geophysics, 46, 854–859, 1981. a
Giroux, B.: Performance of convolutional perfectly matched layers for pseudospectral time domain poroviscoelastic schemes, Comput. Geosci., 45, 149–160, 2012. a
Higdon, R.: Absorbing boundary conditions for difference approximations to the multidimensional wave equation, Math. Comput., 47, 437–459, 1986. a
Higdon, R.: Numerical absorbing boundary conditions for the wave equation, Math. Comput., 49, 65–90, 1987. a
Israeli, M. and Orszag, S.: Approximation of radiation boundary conditions, Journal Computational Physics, 41, 115–135, 1981.
a,
b,
c
Kaufmann, T., Fumeaux, K. S. C., and Vahldieck, R.: A Review of Perfectly Matched Absorbers for the Finite-Volume Time-Domain Method, Appl. Comput. Electrom., 23, 184–192,
https://hdl.handle.net/2440/55826 (last access: 10 December 2023), 2008. a
Khokhriakov, S., Reddy, R., and Lastovetsky, A.: Novel Model-based Methods for Performance Optimization of Multithreaded 2D Discrete Fourier Transform on Multicore Processors, arXiv [preprint],
https://doi.org/10.48550/arXiv.1808.05405, 16 August 2018.
a
Klin, P., Priolo, E., and Seriani, G.: Numerical simulation of seismic wave propagation in realistic 3-D geo-models with a Fourier pseudo-spectral method, Geophys. J. Int., 183, 905–922, 2010.
a,
b
Komatitsch, D. and Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 72, SM155–SM167, 2007. a
Komatitsch, D. and Tromp, J.: A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation, Geophys. J. Int., 154, 146–153, 2003. a
Kosloff, R. and Kosloff, D.: Absorbing Boundaries for Wave Propagation Problems, J. Comput. Phys., 63, 363–376, 1986.
a,
b
Kristek, J., Moczo, P., and Galis, M.: A brief summary of some PML formulations and discretizations for the velocity-stress equation of seismic motion, Stud. Geophys. Geod., 53, 459–474, 2009.
a,
b
Kristekova, M., Kristek, J., Moczo, P., and Day, S.: Misfit criteria for quantitative comparison of seismograms, B. Seismol. Soc. Am., 96, 1836–1850, 2006. a
Li, Q., Chen, Y., and Ge, D.: Comparison Study of the PSTD and FDTD Methods for Scattering Analysis, Microw. Opt. Techn. Let., 25, 220–226, 2000. a
Lisitsa, V.: Optimal discretization of PML for elasticity problems, Electron. T. Numer. Ana., 30, 258–277, 2000. a
Liu, Q.: The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media, IEEE T. Ultrason. Ferr., 45, 1044–1055, 1998a. a
Liu, Q.: Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm, IEEE T. Geosci. Remote, 37, 917–926, 1998b. a
Moreira, R. M., Delfino, A. D. S., Kassuga, T. D., Pessolani, R. B. V., Bulcão, A., and Catão, G.: Optimization of Absorbing Boundary Methods for Acoustic Wave Modelling, in: 11th International Congress of the Brazilian Geophysical Society (pp. cp-195), European Association of Geoscientists & Engineers,
https://doi.org/10.3997/2214-4609-pdb.195.1830_evt_6year_2009, 2009.
a
Ng, M.: Using time-shift imaging condition for seismic migration interpolation, in: Society of Exploration Geophysicists: In SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 2378–2382,
https://doi.org/10.1190/1.2792961, 2007.
a
Ozdenvar, T. and McMechan, G.: Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation, Geophys. J. Int., 126, 819–828, 1996. a
Peng, Z. and Cheng, J.: Modified pseudo-spectral method for wave propagation modelling in arbitrary anisotropic media, in: 78th EAGE Conference and Exhibition 2016, Vol. 2016, No. 1, European Association of Geoscientists & Engineers, 1–5,
https://doi.org/10.3997/2214-4609.201601417, 2016.
a
Pernice, W.: Pseudo-spectral time-domain simulation of the transmission and the group delay of photonic devices, Opt. Quant. Electron., 40, 1–12, 2008. a
Reshef, M., Kosloff, D., Edwards, M., and Hsiung, C.: Three-dimensional elastic modeling by the Fourier method, Geophysics, 53, 1184–1193, 1988. a
Reynolds, A.: Boundary conditions for the numerical solution of wave propagation problems, Geophysics, 43, 1099–1110, 1978. a
Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, S.: Absorbing Boundary Conditions and Surface Waves, Geophysics, 52, 60–71, 1987. a
Spa, C., Escolano, J., and Garriga, A.: Semi-empirical Boundary Conditions for the Linearized Acoustic Euler Equations using Pseudo-Spectral Time-Domain Methods, Appl. Acoust., 72, 226–230, 2011. a
Spa, C., Reche-López, P., and Hernández, E.: Numerical Absorbing Boundary Conditions Based on a Damped Wave Equation for Pseudospectral Time-Domain Acoustic Simulations, The Scientific World Journal,
https://doi.org/10.1155/2014/285945, 2014.
a,
b,
c,
d
Spa, C., Rojas, O., and de la Puente, J.: Comparison of expansion-based explicit time-integration schemes for acoustic wave propagation, Geophysics, 85, T165–T178, 2020.
a,
b
Xie, J., Guo, Z., Liu, H., and Liu, Q.: Reverse Time Migration Using the Pseudospectral Time-Domain Algorithm, J. Comput. Acoust., 24, 1650005,
https://doi.org/10.1142/S0218396X16500053, 2016.
a,
b
Xie, J., Guo, Z., Liu, H., and Liu, Q.: GPU acceleration of time gating based reverse time migration using the pseudospectral time-domain algorithm, Comput. Geosci., 117, 57–62, 2018. a
Yoon, K., Shin, C., Suh, S., Lines, L., and Hong, S.: 3D reverse-time migration using the acoustic wave equation: An experience with the SEG/EAGE data set, The Leading Edge, 22, 38–41, 2003. a